메뉴 건너뛰기




Volumn 6, Issue 4, 1996, Pages 313-351

! And ? - Storage as tensorial strength

Author keywords

[No Author keywords available]

Indexed keywords

DE MORGAN; EXPONENTIALS; FREE STRUCTURES; LINEAR LOGIC; MULTIPLICATIVE LINEAR LOGIC;

EID: 0001580148     PISSN: 09601295     EISSN: None     Source Type: Journal    
DOI: 10.1017/S0960129500001055     Document Type: Article
Times cited : (20)

References (19)
  • 1
    • 84976007916 scopus 로고
    • ∗-Autonomous categories and linear logic
    • Barr, M. (1991) ∗-Autonomous categories and linear logic. Math. Struct, in Comp. Science 1 159-178.
    • (1991) Math. Struct, in Comp. Science , vol.1 , pp. 159-178
    • Barr, M.1
  • 3
    • 0001775032 scopus 로고
    • What is a categorical model of intuitionistic linear logic?
    • In: Dezani, M. (ed.), Springer-Verlag. (Also: Technical Report 333, University of Cambridge, 1994.)
    • Bierman, G. M. (1995) What is a categorical model of intuitionistic linear logic?. In: Dezani, M. (ed.) Proceedings of Conference on Typed lambda calculus and Applications, Springer-Verlag. (Also: Technical Report 333, University of Cambridge, 1994.)
    • (1995) Proceedings of Conference on Typed Lambda Calculus and Applications
    • Bierman, G.M.1
  • 4
    • 0027909575 scopus 로고
    • Linear logic, coherence and dinaturality
    • Blute, R. F. (1993) Linear Logic, Coherence and Dinaturality. Theoretical Computer Science 115 3-41.
    • (1993) Theoretical Computer Science , vol.115 , pp. 3-41
    • Blute, R.F.1
  • 6
    • 84974201325 scopus 로고
    • Introduction to distributive categories
    • Cockett, J. R. B. (1993) Introduction to distributive categories. Math. Struct, in Comp. Science 3 277-308.
    • (1993) Math. Struct, in Comp. Science , vol.3 , pp. 277-308
    • Cockett, J.R.B.1
  • 7
    • 0001217672 scopus 로고
    • Weakly distributive categories
    • In: Fourman, M. P., Johnstone, P. T and Pitts, A. M. (eds.). (Expanded version to appear in Journal of Pure and Applied Algebra.)
    • Cockett, J. R. B. and Seely, R. A. G. (1992) Weakly distributive categories. In: Fourman, M. P., Johnstone, P. T and Pitts, A. M. (eds.) Applications of Categories to Computer Science, London Mathematical Society Lecture Note Series 177 45-65. (Expanded version to appear in Journal of Pure and Applied Algebra.)
    • (1992) Applications of Categories to Computer Science, London Mathematical Society Lecture Note Series , vol.177 , pp. 45-65
    • Cockett, J.R.B.1    Seely, R.A.G.2
  • 10
    • 34249964431 scopus 로고
    • The structure of multiplicatives
    • Danos, V. and Regnier, L. (1989) The structure of multiplicatives. Archive for Math. Logic 28 181-203.
    • (1989) Archive for Math. Logic , vol.28 , pp. 181-203
    • Danos, V.1    Regnier, L.2
  • 11
    • 0001311713 scopus 로고
    • Coalgebras and Cartesian categories
    • Fox, T. (1976) Coalgebras and Cartesian categories. Communications in Algebra 7 665-667.
    • (1976) Communications in Algebra , vol.7 , pp. 665-667
    • Fox, T.1
  • 13
    • 84976163878 scopus 로고
    • A new constructive logic: Classical logic
    • Girard, J.-Y. (1991) A new constructive logic: classical logic. Math. Struct, in Comp. Science 1 255-296.
    • (1991) Math. Struct, in Comp. Science , vol.1 , pp. 255-296
    • Girard, J.-Y.1
  • 14
    • 44949283969 scopus 로고
    • The geometry of tensor calculus i
    • Joyal, A. and Street, R. (1991) The geometry of tensor calculus I. Advances in Mathematics 88 55-112.
    • (1991) Advances in Mathematics , vol.88 , pp. 55-112
    • Joyal, A.1    Street, R.2
  • 16
    • 0028766098 scopus 로고
    • Constant-only multiplicative linear logic is NP-complete
    • Lincoln, P. and Winkler, I. (1994) Constant-only multiplicative linear logic is NP-complete. Theoretical Computer Science 135 155-169.
    • (1994) Theoretical Computer Science , vol.135 , pp. 155-169
    • Lincoln, P.1    Winkler, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.