-
1
-
-
84976007916
-
∗-Autonomous categories and linear logic
-
Barr, M. (1991) ∗-Autonomous categories and linear logic. Math. Struct, in Comp. Science 1 159-178.
-
(1991)
Math. Struct, in Comp. Science
, vol.1
, pp. 159-178
-
-
Barr, M.1
-
2
-
-
0013279209
-
-
Technical Report 262, University of Cambridge
-
Benton, B. N., Bierman,G., de Paiva, V. and Hyland, M. (1992) Term assignment for intuitionistic linear logic (preliminary report). Technical Report 262, University of Cambridge.
-
(1992)
Term Assignment for Intuitionistic Linear Logic (Preliminary Report)
-
-
Benton, B.N.1
Bierman, G.2
De Paiva, V.3
Hyland, M.4
-
3
-
-
0001775032
-
What is a categorical model of intuitionistic linear logic?
-
In: Dezani, M. (ed.), Springer-Verlag. (Also: Technical Report 333, University of Cambridge, 1994.)
-
Bierman, G. M. (1995) What is a categorical model of intuitionistic linear logic?. In: Dezani, M. (ed.) Proceedings of Conference on Typed lambda calculus and Applications, Springer-Verlag. (Also: Technical Report 333, University of Cambridge, 1994.)
-
(1995)
Proceedings of Conference on Typed Lambda Calculus and Applications
-
-
Bierman, G.M.1
-
4
-
-
0027909575
-
Linear logic, coherence and dinaturality
-
Blute, R. F. (1993) Linear Logic, Coherence and Dinaturality. Theoretical Computer Science 115 3-41.
-
(1993)
Theoretical Computer Science
, vol.115
, pp. 3-41
-
-
Blute, R.F.1
-
5
-
-
0010872319
-
-
To appear in Journal of Pure and Applied Algebra. (Also: Preprint, McGill University, 1992, revised 1994.)
-
Blute R., Cockett, J. R. B., Seely, R. A. G. and Trimble, T. H. (1992) Natural deduction and coherence for weakly distributive categories. To appear in Journal of Pure and Applied Algebra. (Also: Preprint, McGill University, 1992, revised 1994.)
-
(1992)
Natural Deduction and Coherence for Weakly Distributive Categories
-
-
Blute, R.1
Cockett, J.R.B.2
Seely, R.A.G.3
Trimble, T.H.4
-
6
-
-
84974201325
-
Introduction to distributive categories
-
Cockett, J. R. B. (1993) Introduction to distributive categories. Math. Struct, in Comp. Science 3 277-308.
-
(1993)
Math. Struct, in Comp. Science
, vol.3
, pp. 277-308
-
-
Cockett, J.R.B.1
-
7
-
-
0001217672
-
Weakly distributive categories
-
In: Fourman, M. P., Johnstone, P. T and Pitts, A. M. (eds.). (Expanded version to appear in Journal of Pure and Applied Algebra.)
-
Cockett, J. R. B. and Seely, R. A. G. (1992) Weakly distributive categories. In: Fourman, M. P., Johnstone, P. T and Pitts, A. M. (eds.) Applications of Categories to Computer Science, London Mathematical Society Lecture Note Series 177 45-65. (Expanded version to appear in Journal of Pure and Applied Algebra.)
-
(1992)
Applications of Categories to Computer Science, London Mathematical Society Lecture Note Series
, vol.177
, pp. 45-65
-
-
Cockett, J.R.B.1
Seely, R.A.G.2
-
10
-
-
34249964431
-
The structure of multiplicatives
-
Danos, V. and Regnier, L. (1989) The structure of multiplicatives. Archive for Math. Logic 28 181-203.
-
(1989)
Archive for Math. Logic
, vol.28
, pp. 181-203
-
-
Danos, V.1
Regnier, L.2
-
11
-
-
0001311713
-
Coalgebras and Cartesian categories
-
Fox, T. (1976) Coalgebras and Cartesian categories. Communications in Algebra 7 665-667.
-
(1976)
Communications in Algebra
, vol.7
, pp. 665-667
-
-
Fox, T.1
-
13
-
-
84976163878
-
A new constructive logic: Classical logic
-
Girard, J.-Y. (1991) A new constructive logic: classical logic. Math. Struct, in Comp. Science 1 255-296.
-
(1991)
Math. Struct, in Comp. Science
, vol.1
, pp. 255-296
-
-
Girard, J.-Y.1
-
14
-
-
44949283969
-
The geometry of tensor calculus i
-
Joyal, A. and Street, R. (1991) The geometry of tensor calculus I. Advances in Mathematics 88 55-112.
-
(1991)
Advances in Mathematics
, vol.88
, pp. 55-112
-
-
Joyal, A.1
Street, R.2
-
16
-
-
0028766098
-
Constant-only multiplicative linear logic is NP-complete
-
Lincoln, P. and Winkler, I. (1994) Constant-only multiplicative linear logic is NP-complete. Theoretical Computer Science 135 155-169.
-
(1994)
Theoretical Computer Science
, vol.135
, pp. 155-169
-
-
Lincoln, P.1
Winkler, I.2
|