-
1
-
-
36549103177
-
-
K. Leo, T. C. Damen, J. Shah, E. O. Göbel, and K. Köhler, Appl. Phys. Lett. 57, 19 (1990).
-
(1990)
Appl. Phys. Lett.
, vol.57
, pp. 19
-
-
Leo, K.1
Damen, T.C.2
Shah, J.3
Göbel, E.O.4
Köhler, K.5
-
2
-
-
0001736583
-
-
K. Leo, J. Shah, E. O. Göbel, T. C. Damen, S. Schmitt-Rink, W. Schäfer, and K. Köhler, Phys. Rev. Lett. 66, 201 (1991).
-
(1991)
Phys. Rev. Lett.
, vol.66
, pp. 201
-
-
Leo, K.1
Shah, J.2
Göbel, E.O.3
Damen, T.C.4
Schmitt-Rink, S.5
Schäfer, W.6
Köhler, K.7
-
3
-
-
0001117181
-
-
J. Feldmann, K. Leo, J. Shah, D. A. B. Miller, J. E. Cunningham, T. Meier, G. von Plessen, A. Schulze, P. Thomas, and S. Schmitt-Rink, Phys. Rev. B 46, 7252 (1992).
-
(1992)
Phys. Rev. B
, vol.46
, pp. 7252
-
-
Feldmann, J.1
Leo, K.2
Shah, J.3
Miller, D.A.B.4
Cunningham, J.E.5
Meier, T.6
von Plessen, G.7
Schulze, A.8
Thomas, P.9
Schmitt-Rink, S.10
-
5
-
-
0001513608
-
-
Jörg Hader, Torsten Meier, Stephan W. Koch, Fausto Rossi, and Norbert Linder, Phys. Rev. B 55, 13 799 (1997).
-
(1997)
Phys. Rev. B
, vol.55
, pp. 13
-
-
-
6
-
-
0000154057
-
-
T. Meier, G. von Plessen, P. Thomas, and S. W. Koch, Phys. Rev. Lett. 73, 902 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 902
-
-
Meier, T.1
von Plessen, G.2
Thomas, P.3
Koch, S.W.4
-
7
-
-
0001298040
-
-
T. Meier, G. von Plessen, P. Thomas, and S. W. Koch, Phys. Rev. B 51, 14 490 (1995).
-
(1995)
Phys. Rev. B
, vol.51
, pp. 14
-
-
Meier, T.1
von Plessen, G.2
Thomas, P.3
Koch, S.W.4
-
8
-
-
7444220578
-
-
T. Meier, F. Rossi, P. Thomas, and S. W. Koch, Phys. Rev. Lett. 75, 2558 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 2558
-
-
Meier, T.1
Rossi, F.2
Thomas, P.3
Koch, S.W.4
-
12
-
-
0001407773
-
-
Margaret Hawton and Delene Nelson, Phys. Rev. B 57, 4000 (1998).
-
(1998)
Phys. Rev. B
, vol.57
, pp. 4000
-
-
-
18
-
-
0012323595
-
-
Phys. Rev. BD. M. Whittaker, et al., 41, 3238 (1990).
-
(1990)
, vol.41
, pp. 3238
-
-
Whittaker, D.M.1
-
19
-
-
85038279207
-
-
See, e.g., Dignam, Sipe, and Shah (Ref. 15) and references therein
-
See, e.g., Dignam, Sipe, and Shah (Ref. 15) and references therein.
-
-
-
-
20
-
-
4143103712
-
-
C. Waschke, H. G. Roskos, R. Schwedler, K. Leo, H. Kurz, and K. Köhler, Phys. Rev. Lett. 70, 3319 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 3319
-
-
Waschke, C.1
Roskos, H.G.2
Schwedler, R.3
Leo, K.4
Kurz, H.5
Köhler, K.6
-
22
-
-
0642364681
-
-
Norbert Linder, W. Geisselbrecht, G. Philipp, K. H. Schmidt, and G. H. Döhler, J. Phys. IV 3, C-195 (1993);
-
(1993)
J. Phys. IV
, vol.3
, pp. 195
-
-
Geisselbrecht, W.1
Philipp, G.2
Schmidt, K.H.3
Döhler, G.H.4
-
23
-
-
33749516759
-
-
Norbert Linder, Klaus H. Schmidt, Wolfgang Geisselbrecht, Gottfried H. Döhler, Hogler T. Grahn, Klaus Ploog, and Harald Schneider, Phys. Rev. B 52, 17 352 (1995).
-
(1995)
Phys. Rev. B
, vol.52
, pp. 17
-
-
-
25
-
-
0001207556
-
-
M. Sudzius, V. G. Lyssenko, F. Löser, K. Leo, M. M. Dignam, and K. Köhler, Phys. Rev. B 57, R12 693 (1998).
-
(1998)
Phys. Rev. B
, vol.57
, pp. 12
-
-
Sudzius, M.1
Lyssenko, V.G.2
Löser, F.3
Leo, K.4
Dignam, M.M.5
Köhler, K.6
-
26
-
-
0031191060
-
-
V. G. Lyssenko, G. Valušis, F. Löser, T. Hasche, K. Leo, M. M. Dignam, and K. Köhler, Phys. Rev. Lett. 79, 301 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 301
-
-
Lyssenko, V.G.1
Valušis, G.2
Löser, F.3
Hasche, T.4
Leo, K.5
Dignam, M.M.6
Köhler, K.7
-
27
-
-
0001519833
-
-
Kristinn Johnsen and Antti-Pekka Jauho, Phys. Rev. B 57, 8860 (1998).
-
(1998)
Phys. Rev. B
, vol.57
, pp. 8860
-
-
-
28
-
-
85031560630
-
-
See, e.g., W. Schäfer, D. S. Kim, J. Shah, T. C. Damen, J. E. Cunningham, K. W. Goossen, L. N. Pfeiffer, and K. Köhler, Phys. Rev. B 53, 16 429 (1998);
-
(1998)
Phys. Rev. B
, vol.53
, pp. 16
-
-
Schäfer, W.1
Kim, D.S.2
Shah, J.3
Damen, T.C.4
Cunningham, J.E.5
Goossen, K.W.6
Pfeiffer, L.N.7
Köhler, K.8
-
29
-
-
85038277297
-
-
Phys. Rev. BG. Bartels, G. C. Cho, T. Dekorsy, H. Kurz, A. Stahl, and K. Köhler, 55, 16 404 (1997).
-
(1997)
, vol.55
, pp. 16
-
-
Bartels, G.1
Cho, G.C.2
Dekorsy, T.3
Kurz, H.4
Stahl, A.5
Köhler, K.6
-
30
-
-
85038321623
-
-
It should be noted that, because there is a one-to-one correspondence between the density-matrix elements in the two methods (see the Appendix), the physical content of the formalism in the two basis is the same. This has been pointed out previously by Hader et al. in Ref. 5
-
It should be noted that, because there is a one-to-one correspondence between the density-matrix elements in the two methods (see the Appendix), the physical content of the formalism in the two basis is the same. This has been pointed out previously by Hader et al. in Ref. 5.
-
-
-
-
31
-
-
0002981270
-
-
Paula Feuer, Phys. Rev. 88, 92 (1952).
-
(1952)
Phys. Rev.
, vol.88
, pp. 92
-
-
-
32
-
-
85038274280
-
-
The fact that elements such as (Formula presented) do not depend on n is a consequence of two factors: (1) The full excitonic Hamiltonian (including static and terahertz fields) is invariant under simultaneous translation of the exciton center of mass by an integral number of superlattice periods d in the z direction and (2) there are equal numbers of electrons and holes in the system. As a result of this, one can also show that any four-operator expectation values of the form (Formula presented) are also independent of n
-
The fact that elements such as (Formula presented) do not depend on n is a consequence of two factors: (1) The full excitonic Hamiltonian (including static and terahertz fields) is invariant under simultaneous translation of the exciton center of mass by an integral number of superlattice periods d in the z direction and (2) there are equal numbers of electrons and holes in the system. As a result of this, one can also show that any four-operator expectation values of the form (Formula presented) are also independent of n.
-
-
-
-
33
-
-
0001511847
-
-
P. H. Bolivar, F. Wolter, A. Müller, H. G. Roskos, H. Kurz, and K. Köhler, Phys. Rev. Lett. 78, 2232 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 2232
-
-
Bolivar, P.H.1
Wolter, F.2
Müller, A.3
Roskos, H.G.4
Kurz, H.5
Köhler, K.6
-
34
-
-
85038344111
-
-
Determining how to deal with the intraband dephasing constants is a nontrivial matter, as has been pointed out previously by other authors (Refs. 1011 29). There are approximate ways in which the problem can be dealt with in certain cases, such as the TCCL of Axt, Bartels, and Stahl (Ref. 11
-
Determining how to deal with the intraband dephasing constants is a nontrivial matter, as has been pointed out previously by other authors (Refs. 1011, and 29). There are approximate ways in which the problem can be dealt with in certain cases, such as the TCCL of Axt, Bartels, and Stahl (Ref. 11).
-
-
-
-
36
-
-
0000472101
-
-
C. P. Holfeld, F. Löser, M. Sudzius, K. Leo, D. M. Whittaker, and K. Köhler, Phys. Rev. Lett. 81, 874 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 874
-
-
Holfeld, C.P.1
Löser, F.2
Sudzius, M.3
Leo, K.4
Whittaker, D.M.5
Köhler, K.6
-
37
-
-
85038286090
-
-
In the absence of the electron-hole Coulomb interaction, it is easy to show that the sum over m given by (Formula presented) Thus the expression for the intraband polarization yields the dc polarization as well as the terahertz polarization associated with each harmonic of the superlattice dispersion relations
-
In the absence of the electron-hole Coulomb interaction, it is easy to show that the sum over m given by (Formula presented) Thus the expression for the intraband polarization yields the dc polarization as well as the terahertz polarization associated with each harmonic of the superlattice dispersion relations.
-
-
-
-
39
-
-
85038285679
-
-
For the system considered, this corresponds to a dephasing time of 0.52 ps. This time has been chosen to be somewhat smaller than the experimentally estimated dephasing time of 1 ps in order to aid in the discussion of the basic physical effects
-
For the system considered, this corresponds to a dephasing time of 0.52 ps. This time has been chosen to be somewhat smaller than the experimentally estimated dephasing time of 1 ps in order to aid in the discussion of the basic physical effects.
-
-
-
-
40
-
-
85038348646
-
-
It should be noted that one of the consequences of taking the central frequency to be different from the (Formula presented) WSL state frequency would be to introduce a relatively weak asymmetry between the absorption for the (Formula presented) and (Formula presented) WSL states when (Formula presented) For simplicity we have not presented such cases in this paper
-
It should be noted that one of the consequences of taking the central frequency to be different from the (Formula presented) WSL state frequency would be to introduce a relatively weak asymmetry between the absorption for the (Formula presented) and (Formula presented) WSL states when (Formula presented) For simplicity we have not presented such cases in this paper.
-
-
-
|