-
5
-
-
0001596062
-
-
K. Wurm, R. Kliese, Y. Hong, B. Röttger, Y. Wei, H. Neddermeyer, and I. S. T. Tsong, Phys. Rev. B 50, 1567 (1994).
-
(1994)
Phys. Rev. B
, vol.50
, pp. 1567
-
-
Wurm, K.1
Kliese, R.2
Hong, Y.3
Röttger, B.4
Wei, Y.5
Neddermeyer, H.6
Tsong, I.S.T.7
-
9
-
-
0001536234
-
-
F. Donig, A. Feltz, M. Kulakov, H. E. Hessel, U. Memmert, and R. J. Behm, J. Vac. Sci. Technol. B 11, 1955 (1993).
-
(1993)
J. Vac. Sci. Technol. B
, vol.11
, pp. 1955
-
-
Donig, F.1
Feltz, A.2
Kulakov, M.3
Hessel, H.E.4
Memmert, U.5
Behm, R.J.6
-
12
-
-
85037882969
-
-
(b) we define the “reactive” sticking coefficient as the fraction of incident (Formula presented) molecules that react with Si to form SiO or (Formula presented) via the exothermic reactions (Formula presented) or (Formula presented) For completeness, we note that we cannot measure reacted oxygen that undergoes one of the back reactions (Formula presented) or (Formula presented) However, we expect these back reactions to be negligible since they are highly endothermic. (a) J. V. Seiple, Ph.D. thesis, The Ohio State University, 1996;
-
(a) J. V. Seiple, Ph.D. thesis, The Ohio State University, 1996;(b) we define the “reactive” sticking coefficient as the fraction of incident (Formula presented) molecules that react with Si to form SiO or (Formula presented) via the exothermic reactions (Formula presented) or (Formula presented) For completeness, we note that we cannot measure reacted oxygen that undergoes one of the back reactions (Formula presented) or (Formula presented) However, we expect these back reactions to be negligible since they are highly endothermic.
-
-
-
-
14
-
-
85037903873
-
-
Digital Instruments “Dimension 3000” AFM.
-
Digital Instruments “Dimension 3000” AFM.
-
-
-
-
15
-
-
3342924439
-
-
O. L. Alerhand, A. N. Berker, J. D. Joannopoulos, D. Vanderbilt, R. J. Hamers, and J. E. Demuth, Phys. Rev. Lett. 64, 2406 (1990).
-
(1990)
Phys. Rev. Lett.
, vol.64
, pp. 2406
-
-
Alerhand, O.L.1
Berker, A.N.2
Joannopoulos, J.D.3
Vanderbilt, D.4
Hamers, R.J.5
Demuth, J.E.6
-
17
-
-
35949005599
-
-
B. S. Swartzentruber, N. Kitamura, M. G. Lagally, and M. B. Webb, Phys. Rev. B 47, 13 432 (1993).
-
(1993)
Phys. Rev. B
, vol.47
, pp. 13 432
-
-
Swartzentruber, B.S.1
Kitamura, N.2
Lagally, M.G.3
Webb, M.B.4
-
18
-
-
11544281894
-
-
W. Daum, H.-J. Krause, U. Reichel, and H. Ibach, Phys. Rev. Lett. 71, 1234 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 1234
-
-
Daum, W.1
Reichel, U.2
Ibach, H.3
-
19
-
-
35949008471
-
-
O. L. Alerhand, D. Vanderbilt, R. D. Meade, and J. D. Joannopoulous, Phys. Rev. Lett. 61, 1973 (1988).
-
(1988)
Phys. Rev. Lett.
, vol.61
, pp. 1973
-
-
Alerhand, O.L.1
Vanderbilt, D.2
Meade, R.D.3
Joannopoulous, J.D.4
-
20
-
-
85037908167
-
-
This rough estimate was made by assuming an oxygen atom “jump” length equal to the surface lattice constant (Formula presented) on Si(001). Then the total number of jumps N before an O atom reaches a cluster is (Formula presented) and the average number of step crossings is (Formula presented)
-
This rough estimate was made by assuming an oxygen atom “jump” length equal to the surface lattice constant (Formula presented) on Si(001). Then the total number of jumps N before an O atom reaches a cluster is (Formula presented) and the average number of step crossings is (Formula presented)
-
-
-
-
21
-
-
0026859649
-
-
Y.-W. Mo, J. Kleiner, M. B. Webb, and M. G. Lagally, Surf. Sci. 268, 275 (1992).
-
(1992)
Surf. Sci.
, vol.268
, pp. 275
-
-
Kleiner, J.1
Webb, M.B.2
Lagally, M.G.3
|