메뉴 건너뛰기




Volumn 70, Issue 20, 1993, Pages 3107-3110

Magnetic oscillations of a fractional Hall dot

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0001486875     PISSN: 00319007     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevLett.70.3107     Document Type: Article
Times cited : (44)

References (34)
  • 13
    • 84927481776 scopus 로고    scopus 로고
    • The ground state can be a Laughlin state only if the sum of the confinement and Hartree potentials varies by less than the bulk chemical potential gap over the droplet. Using this criterion we estimate that the maximum number of electrons for which the ground state can be accurately approximated by a Laughlin state is N app 35. For larger droplets the system will ``phase separate'' into locally incompressible regions with different densities and low-energy excitations will occur both at the outer edge and along internal phase boundaries.
  • 15
    • 84927491375 scopus 로고    scopus 로고
    • A. H. MacDonald, S.-R. Eric Yang, and M. D. Johnson, (to be published).
  • 24
    • 84927467107 scopus 로고    scopus 로고
    • This is the boson grand partition function for bosons occupying states k prime =1 to k with the chemical potential set to the energy of the k=0 state. This partition function accounts for the neutral phononlike collective excitations of the system.
  • 25
    • 84927483259 scopus 로고    scopus 로고
    • The effects of Coulomb interactions can be included approximately by adding the Hartree energy of a uniformly charged disk in Eq. (5) and in the relationship between mu and R. This has the effect of scaling gamma by a term of order unity.
  • 26
    • 84927469642 scopus 로고    scopus 로고
    • We give the magnetization and energy with respect to the values for free electrons in the lowest Landau level, Mfree= - μBN.
  • 31
    • 84927502366 scopus 로고    scopus 로고
    • In the strong magnetic field limit the number of flux quanta throughȧdecreases with field because kinetic energy quantization depopulates the dot. BdNφ/ dB = Nφ- hbar ωc/ 2 gamma.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.