-
3
-
-
0002291769
-
-
A. T. Balaban (Ed.), Plenum Press, New York
-
S. C. Basak, G. D. Grunwald, and G. J. Niemi, in: A. T. Balaban (Ed.), From Chemical Topology to Three-Dimensional Geometry, Plenum Press, New York, 1997, pp. 73-116.
-
(1997)
From Chemical Topology to Three-Dimensional Geometry
, pp. 73-116
-
-
Basak, S.C.1
Grunwald, G.D.2
Niemi, G.J.3
-
6
-
-
36749120371
-
-
I. Gutman, B. Ruščić, N. Trinajstić, and C. F. Wilcox, Jr., J. Chem. Phys. 62 (1975) 3399-3405.
-
(1975)
J. Chem. Phys.
, vol.62
, pp. 3399-3405
-
-
Gutman, I.1
Ruščić, B.2
Trinajstić, N.3
Wilcox Jr., C.F.4
-
10
-
-
0003780715
-
-
second printing, Addison-Wesley, Reading, MA
-
F. Harary, Graph Theory, second printing, Addison-Wesley, Reading, MA, 1972.
-
(1972)
Graph Theory
-
-
Harary, F.1
-
11
-
-
0003391553
-
-
CRC Press, Boca Raton, FL
-
N. Trinajstić, Chemical Graph Theory, 2nd revised edition, CRC Press, Boca Raton, FL, 1992.
-
(1992)
Chemical Graph Theory, 2nd Revised Edition
-
-
Trinajstić, N.1
-
12
-
-
0003098539
-
-
S. C. Basak, S. Nikolić, N. Trinajstić, D. Amić, and D. Bešlo, J. Chem. Inf. Comput. Sci. 40 (2000) 927-933.
-
(2000)
J. Chem. Inf. Comput. Sci.
, vol.40
, pp. 927-933
-
-
Basak, S.C.1
Nikolić, S.2
Trinajstić, N.3
Amić, D.4
Bešlo, D.5
-
14
-
-
0442303361
-
-
note
-
A walk on a graph is an alternating sequence of vertices and edges beginning and ending with vertices, in which each edge is incident with two vertices immediately preceding and following it. A self-returning walk is a walk starting and ending at the same vertex.
-
-
-
-
15
-
-
0141510916
-
-
Branching is an intuitive concept not uniquely defined (e.g., J. W. Essam and M. E. Fisher, Rev. Mod. Phys. 42 (1970) 272-305), though it can be identified through the appearance of vertices of degrees three and higher.
-
(1970)
Rev. Mod. Phys.
, vol.42
, pp. 272-305
-
-
Essam, J.W.1
Fisher, M.E.2
-
16
-
-
0000110023
-
-
One can look upon cyclicity as a kind of structural change resembling branching in that the values of degrees of some vertices within the cycle increase from two to three and higher at the sites of bridging cycle. This structural characteristic has been named (D. Bonchev, Bulg. Chem. Comm. 28 (1995) 567-582) an internal branching. Therefore, the degree of a vertex in a cycle can increase either by cyclization (the internal branching) or by attaching to it acyclic, cyclic or spiro-cyclic fragments (the external branching). These three possibilities correspond, for example, to cyclohexane → bicyclo[2.2.0]hexane, cyclohexane → isopropylcyclohexane and cyclohexane → spiro[3.5]nonane.
-
(1995)
Bulg. Chem. Comm.
, vol.28
, pp. 567-582
-
-
Bonchev, D.1
-
17
-
-
0442318895
-
-
K. Mainzer, Hyle 3 (1997) 29-49.
-
(1997)
Hyle
, vol.3
, pp. 29-49
-
-
Mainzer, K.1
-
18
-
-
0012480214
-
On the Concept of Molecular Complexity
-
in press
-
M. Randić, On the Concept of Molecular Complexity, Croat. Chem. Acta, in press.
-
Croat. Chem. Acta
-
-
Randić, M.1
-
22
-
-
0001787983
-
-
R. B. King (Ed.), Elsevier, Amsterdam
-
S. H. Bertz, in: R. B. King (Ed.), Chemical Applications of Topology and Graph Theory, Elsevier, Amsterdam, 1983, pp. 206-221.
-
(1983)
Chemical Applications of Topology and Graph Theory
, pp. 206-221
-
-
Bertz, S.H.1
-
26
-
-
0002531454
-
-
D. H. Rouvray (Ed.), Nova Sci. Publ., Commack, N.Y.
-
D. Bonchev, in: D. H. Rouvray (Ed.), Computational Chemical Graph Theory, Nova Sci. Publ., Commack, N.Y., 1990, pp. 33-63.
-
(1990)
Computational Chemical Graph Theory
, pp. 33-63
-
-
Bonchev, D.1
-
29
-
-
0442271896
-
-
note
-
The rules used are: (i) branched trees are more complex than unbranched trees; (ii) trees with several branches are more complex than trees with a single branch; (iii) cyclic structures are more complex than the corresponding acyclic structures; (iv) bicyclic structures are more complex than monocyclic structures; (v) branched cycles are more complex than cycles without branches and (vi) cycles with several external branches are more complex than cycles with a single branch.
-
-
-
-
32
-
-
0001588769
-
-
R. B. King and D. H. Rouvray (Eds.), Elsevier, Amsterdam
-
D. Bonchev and O. E. Polansky, in: R. B. King and D. H. Rouvray (Eds.), Graph Theory and Topology in Chemistry, Elsevier, Amsterdam, 1987, pp. 126-158.
-
(1987)
Graph Theory and Topology in Chemistry
, pp. 126-158
-
-
Bonchev, D.1
Polansky, O.E.2
-
33
-
-
0001822434
-
-
J. Devillers and A. T. Balaban (Eds.), Gordon & Breach, Amsterdam
-
D. Bonchev, in: J. Devillers and A. T. Balaban (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon & Breach, Amsterdam, 1999., pp. 361-401.
-
(1999)
Topological Indices and Related Descriptors in QSAR and QSPR
, pp. 361-401
-
-
Bonchev, D.1
|