-
1
-
-
0034419297
-
-
For reviews on self-replicating systems, see: (a) Robertson, A.; Sinclair A. J.; Philp, D. Chem. Soc. Rev. 2000, 29, 141.
-
(2000)
Chem. Soc. Rev.
, vol.29
, pp. 141
-
-
Robertson, A.1
Sinclair, A.J.2
Philp, D.3
-
3
-
-
0026634324
-
-
(c) Orgel, L. E. Nature 1992, 358, 203.
-
(1992)
Nature
, vol.358
, pp. 203
-
-
Orgel, L.E.1
-
5
-
-
0347519347
-
-
(b) Kuhn, H.; Waser, J. Angew. Chem., Int. Ed. Engl. 1981, 20, 500.
-
(1981)
Angew. Chem., Int. Ed. Engl.
, vol.20
, pp. 500
-
-
Kuhn, H.1
Waser, J.2
-
6
-
-
0020664144
-
-
(c) Inoue, T.; Orgel, L. E. Science (Washington, D.C.) 1983, 219, 859.
-
(1983)
Science (Washington, D.C.)
, vol.219
, pp. 859
-
-
Inoue, T.1
Orgel, L.E.2
-
7
-
-
0002979248
-
-
(d) Cech, T. R. Sci. Am. 1986, 255(5), 76.
-
(1986)
Sci. Am.
, vol.255
, Issue.5
, pp. 76
-
-
Cech, T.R.1
-
9
-
-
0003846069
-
-
Cairns-Smith, A. G., Hartman, H., Eds.; CUP: Cambridge
-
(f) Cairns-Smith, A. G. In Genetic Takeover, Cairns-Smith, A. G., Hartman, H., Eds.; CUP: Cambridge, 1982.
-
(1982)
Genetic Takeover
-
-
Cairns-Smith, A.G.1
-
10
-
-
0029811409
-
-
Philp, D.; Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1996, 35, 1154.
-
(1996)
Angew. Chem., Int. Ed. Engl.
, vol.35
, pp. 1154
-
-
Philp, D.1
Stoddart, J.F.2
-
12
-
-
0026433721
-
-
(c) Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312.
-
(1991)
Science
, vol.254
, pp. 1312
-
-
Whitesides, G.M.1
Mathias, J.P.2
Seto, C.T.3
-
15
-
-
0033543474
-
-
(b) Robertson, A.; Philp, D.; Spencer, N. Tetrahedron 1999, 55, 11365.
-
(1999)
Tetrahedron
, vol.55
, pp. 11365
-
-
Robertson, A.1
Philp, D.2
Spencer, N.3
-
16
-
-
0000011153
-
-
(c) Bennes, R. M.; Philp, D.; Spencer, N.; Kariuki, B. M.; Harris, K. D. M. Org. Lett. 1999, 1, 1087.
-
(1999)
Org. Lett.
, vol.1
, pp. 1087
-
-
Bennes, R.M.1
Philp, D.2
Spencer, N.3
Kariuki, B.M.4
Harris, K.D.M.5
-
18
-
-
0033623873
-
-
Soai, K.; Shibata, T.; Sato, I. Acc. Chem. Res. 2000, 33, 382.
-
(2000)
Acc. Chem. Res.
, vol.33
, pp. 382
-
-
Soai, K.1
Shibata, T.2
Sato, I.3
-
19
-
-
0042793164
-
-
note
-
The configuration about the C=N bond was determined using gradient NOE studies. Nitrone 1 was shown to possess a Z configuration.
-
-
-
-
20
-
-
0041791025
-
-
For a detailed explanation of the assignment of the stereochemistry of 3, 4, 6, and 7, see the Supporting Information. See also: Iwakura, Y.; Uno, K.; Hong, S.-J.; Hongu, T. Bull. Chem. Soc. Jpn. 1972, 45, 192.
-
(1972)
Bull. Chem. Soc. Jpn.
, vol.45
, pp. 192
-
-
Iwakura, Y.1
Uno, K.2
Hong, S.-J.3
Hongu, T.4
-
22
-
-
0025185821
-
-
Garcia-Tellado, F.; Goswami, S.; Chang, S.; Geib, S. J.; Hamilton, A D. J. Am. Chem. Soc. 1990, 112, 7393.
-
(1990)
J. Am. Chem. Soc.
, vol.112
, pp. 7393
-
-
Garcia-Tellado, F.1
Goswami, S.2
Chang, S.3
Geib, S.J.4
Hamilton, A.D.5
-
23
-
-
0041290428
-
-
(b) Yang, J.; Fan, E.; Geib, S. J.; Hamilton, S. J. J. Am. Chem. Soc. 1993, 115, 369.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 369
-
-
Yang, J.1
Fan, E.2
Geib, S.J.3
Hamilton, S.J.4
-
24
-
-
0041791027
-
-
note
-
Molecular modeling representations of the entire autocatalytic cycle are provided in the Supporting Information.
-
-
-
-
25
-
-
0042793162
-
-
note
-
It is clear from the experimental results presented here that 6 exerts a significant level of stereocontrol on the reaction between 1 and 5 in the [1·5·6] complex. However, the details of this process at a supramolecular level are likely to be complex and are currently under detailed investigation in our laboratory.
-
-
-
-
26
-
-
0029955316
-
-
There has been considerable discussion in the literature concerning the benefits and drawbacks of using a minimal model compared to full kinetic modeling (Reinhoudt, D. N.; Rudekevich, D. M.; de Jong, F. J. Am. Chem. Soc. 1996, 118, 6880). We have performed both minimal and full kinetic modeling on this system. The data from the full kinetic modeling is entirely consistent with the conclusions drawn here; however, its description is beyond the scope of this paper and will be presented elsewhere. The minimal modeling is presented here in order to set our system in the context of other replicating systems published previously.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 6880
-
-
Reinhoudt, D.N.1
Rudekevich, D.M.2
De Jong, F.3
-
27
-
-
0041791026
-
-
note
-
d (100 mM) for this putative reactive [1·5] complex. We therefore discount any contribution to the overall rate of reaction from this complex.
-
-
-
-
28
-
-
0029761897
-
-
have p values between 0.6 and 0.7
-
Systems based on nucleic acids, which all show strong product inhibition, have p values of around 0.5. Peptide-based systems (see, e.g., Lee, D. H.; Granja, J. R.; Martinez, J. A.; Severin, K.; Ghadiri, M. R. Nature 1996, 382, 525) have p values between 0.6 and 0.7. The Diels-Alder based system of Sutherland (Wang, B.; Sutherland, I. O. Chem Commun. 1997, 1495) has a p value of 0.80. The peptide-based systems of Ghadiri have ε values of around 500, and the Diels-Alder based system of Sutherland has an ε value of around 10 000 depending on the reaction temperature.
-
(1996)
Nature
, vol.382
, pp. 525
-
-
Lee, D.H.1
Granja, J.R.2
Martinez, J.A.3
Severin, K.4
Ghadiri, M.R.5
-
29
-
-
0000526376
-
-
has a p value of 0.80
-
Systems based on nucleic acids, which all show strong product inhibition, have p values of around 0.5. Peptide-based systems (see, e.g., Lee, D. H.; Granja, J. R.; Martinez, J. A.; Severin, K.; Ghadiri, M. R. Nature 1996, 382, 525) have p values between 0.6 and 0.7. The Diels-Alder based system of Sutherland (Wang, B.; Sutherland, I. O. Chem Commun. 1997, 1495) has a p value of 0.80. The peptide-based systems of Ghadiri have ε values of around 500, and the Diels-Alder based system of Sutherland has an ε value of around 10 000 depending on the reaction temperature.
-
(1997)
Chem Commun.
, pp. 1495
-
-
Wang, B.1
Sutherland, I.O.2
|