-
2
-
-
0003769384
-
-
M.-J. Giannoni, A. Voros, J. Zinn-Justin, North-Holland, Amsterdam
-
Chaos and Quantum Physics, 1989 Les Houches LII, edited by M.-J. Giannoni, A. Voros, and J. Zinn-Justin (North-Holland, Amsterdam, 1991).
-
(1991)
Chaos and Quantum Physics, 1989 Les Houches LII
-
-
-
6
-
-
0000758154
-
-
P. Gaspard, S. A. Rice, H. J. Mikesaka, and K. Nakamura, Phys. Rev. A 42, 4015 (1990).
-
(1990)
Phys. Rev. A
, vol.42
, pp. 4015
-
-
Gaspard, P.1
Rice, S.A.2
Mikesaka, H.J.3
Nakamura, K.4
-
21
-
-
0003973169
-
-
G. Casati, J. Ford, Lecture Notes in Physics Vol. 93, Springer-Verlag, Berlin
-
G. Casati, B. V. Chirikov, F. M. Izrailev, and J. Ford, in Stochastic Behavior in Classical and Hamiltonian Systems, edited by G. Casati and J. Ford, Lecture Notes in Physics Vol. 93 (Springer-Verlag, Berlin, 1979).
-
(1979)
Stochastic Behavior in Classical and Hamiltonian Systems
-
-
Casati, G.1
Chirikov, B.V.2
Izrailev, F.M.3
Ford, J.4
-
22
-
-
49249146140
-
-
M. V. Berry, N. L. Balazs, M. Tabor, and A. Voros, Ann. Phys. (N.Y.) 122, 26 (1979).
-
(1979)
Ann. Phys. (N.Y.)
, vol.122
, pp. 26
-
-
Berry, M.V.1
Balazs, N.L.2
Tabor, M.3
Voros, A.4
-
31
-
-
0000430309
-
-
B. Eckhardt, S. Fishman, K. Muller, and D. Wintgen, Phys. Rev. A 45, 3531 (1992).
-
(1992)
Phys. Rev. A
, vol.45
, pp. 3531
-
-
Eckhardt, B.1
Fishman, S.2
Muller, K.3
Wintgen, D.4
-
32
-
-
34547346865
-
-
T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. Wong, Rev. Mod. Phys. 53, 385 (1981).
-
(1981)
Rev. Mod. Phys.
, vol.53
, pp. 385
-
-
Brody, T.A.1
Flores, J.2
French, J.B.3
Mello, P.A.4
Pandey, A.5
Wong, S.S.M.6
-
35
-
-
0001399910
-
-
O. Bohigas, M. J. Giannoni, A. M. Ozorio de Almeida, and C. Schmit, Nonlinearity 8, 203 (1995).
-
(1995)
Nonlinearity
, vol.8
, pp. 203
-
-
Bohigas, O.1
Giannoni, M.J.2
Ozorio de Almeida, A.M.3
Schmit, C.4
-
38
-
-
85036314484
-
-
The difference between the two diffusion coefficients results in the absence of the (Formula presented) factor in Eq. (27). The momentum is proportional to k, while the change in the action with the parameter (action velocity) is not. Also, there is a minor difference in the momentum being a sum of the sines of the position variable at intermediate times, while it is the cosines for the action velocity
-
The difference between the two diffusion coefficients results in the absence of the (Formula presented) factor in Eq. (27). The momentum is proportional to k, while the change in the action with the parameter (action velocity) is not. Also, there is a minor difference in the momentum being a sum of the sines of the position variable at intermediate times, while it is the cosines for the action velocity.
-
-
-
|