-
2
-
-
84968481098
-
The initial trace of the solution of the porous medium equation
-
D. ARONSON, L. CAFFARELLI. The initial trace of the solution of the porous medium equation, Trans. Amer. Math. Soc. 280 (1983), 351-366.
-
(1983)
Trans. Amer. Math. Soc.
, vol.280
, pp. 351-366
-
-
Aronson, D.1
Caffarelli, L.2
-
3
-
-
0040517354
-
Symmetry in an elliptic problem and the blow-up set of a quasilinear heat equation
-
C. CORTÁZAR, M. ELGUETA, P. FELMER. Symmetry in an elliptic problem and the blow-up set of a quasilinear heat equation. Comm. in P.D.E.'s, 21 (1996), 507-520.
-
(1996)
Comm. in P.D.E.'s
, vol.21
, pp. 507-520
-
-
Cortázar, C.1
Elgueta, M.2
Felmer, P.3
-
5
-
-
0018958786
-
Regularity of the free boundary of a gas flow in an n-dimensional porous medium, Indiana
-
L. CAFFARELLI, A. FRIEDMAN. Regularity of the free boundary of a gas flow in an n-dimensional porous medium, Indiana. Univ. Math. J. 29 (1980), 361-391.
-
(1980)
Univ. Math. J.
, vol.29
, pp. 361-391
-
-
Caffarelli, L.1
Friedman, A.2
-
6
-
-
0001301181
-
Lipschitz continuity of solutions and interfaces of the N-dimensional porous medium equation Indiana
-
L. CAFFARELLI, J. VAZQUEZ, N. WOLANSKI. Lipschitz continuity of solutions and interfaces of the N-dimensional porous medium equation Indiana. Univ. Math. J. 36 (1987), 373-401.
-
(1987)
Univ. Math. J.
, vol.36
, pp. 373-401
-
-
Caffarelli, L.1
Vazquez, J.2
Wolanski, N.3
-
7
-
-
84973041695
-
Non-negative solutions of the porous medium equation
-
B. DAHLBERG, C. KENIG. Non-negative solutions of the porous medium equation. Comm. in P.D.E. 9 (1984), 409-437.
-
(1984)
Comm. in P.D.E.
, vol.9
, pp. 409-437
-
-
Dahlberg, B.1
Kenig, C.2
-
11
-
-
84973976169
-
Blow-up for quasilinear heat equations with critical Fujita's exponent
-
V. GALAKTIONOV. Blow-up for quasilinear heat equations with critical Fujita's exponent. Proc. Roy. Soc. Edinburgh 124A (1994), 517-525.
-
(1994)
Proc. Roy. Soc. Edinburgh
, vol.124 A
, pp. 517-525
-
-
Galaktionov, V.1
-
12
-
-
0000332576
-
Characterizing blow-up using similarity variables
-
Y. GIGA AND R. KOHN. Characterizing blow-up using similarity variables Indiana Univ. Math. J. 36 (1987) 1-40.
-
(1987)
Indiana Univ. Math. J.
, vol.36
, pp. 1-40
-
-
Giga, Y.1
Kohn, R.2
-
13
-
-
84990575181
-
Nondegeneracy of blow-up for semilinear heat equations
-
Y. GIGA AND R. KOHN. Nondegeneracy of blow-up for semilinear heat equations. Comrri. Pure Appl. Math. 42 (1989) 845-884.
-
(1989)
Comrri. Pure Appl. Math.
, vol.42
, pp. 845-884
-
-
Giga, Y.1
Kohn, R.2
-
14
-
-
84990637864
-
Symmetry of the Blow-up set of a porous medium equation
-
C. GUI. Symmetry of the Blow-up set of a porous medium equation. Comm. Pure Appl. Math. 48 (1995), 471-500.
-
(1995)
Comm. Pure Appl. Math.
, vol.48
, pp. 471-500
-
-
Gui, C.1
-
17
-
-
0003589034
-
-
Nauka, Moscow
-
A. SAMARSKII, V. GALAKTIONOV, V. KURDYUMOV AND A. MIKHAILOV. Blow-up in problems for quasilinear parabolic equations, (in Russian), Nauka, Moscow 1987.
-
(1987)
Blow-up in Problems for Quasilinear Parabolic Equations, (in Russian)
-
-
Samarskii, A.1
Galaktionov, V.2
Kurdyumov, V.3
Mikhailov, A.4
-
18
-
-
0001494169
-
Characterizing blow-up using similarity variables
-
J. VELÁZQUEZ. Characterizing blow-up using similarity variables Indiana Univ. Math. J. bf42 (1993), 445-476.
-
(1993)
Indiana Univ. Math. J. bf42
, pp. 445-476
-
-
Velázquez, J.1
|