Formation of the pseudoscalars 0, and in the reaction
(92)
Williams, D A
a,b,c,d,e,f,g,h,i,j,k,l,m
Antreasyan, D
a,b,c,d,e,f,g,h,i,j,k,l,m
Bartels, H W
a,b,c,d,e,f,g,h,i,j,k,l,m
Besset, D
a,b,c,d,e,f,g,h,i,j,k,l,m
Bieler, Ch
a,b,c,d,e,f,g,h,i,j,k,l,m
Bienlein, J K
a,b,c,d,e,f,g,h,i,j,k,l,m
Bizzeti, A
a,b,c,d,e,f,g,h,i,j,k,l,m
Bloom, E D
a,b,c,d,e,f,g,h,i,j,k,l,m
Brock, I
a,b,c,d,e,f,g,h,i,j,k,l,m
Brockmller K
a,b,c,d,e,f,g,h,i,j,k,l,m
Cabenda, R
a,b,c,d,e,f,g,h,i,j,k,l,m
Cartacci, A
a,b,c,d,e,f,g,h,i,j,k,l,m
Cavalli Sforza, M
a,b,c,d,e,f,g,h,i,j,k,l,m
Clare, R
a,b,c,d,e,f,g,h,i,j,k,l,m
Compagnucci, A
a,b,c,d,e,f,g,h,i,j,k,l,m
Conforto, G
a,b,c,d,e,f,g,h,i,j,k,l,m
Cooper, S
a,b,c,d,e,f,g,h,i,j,k,l,m
Cowan, R
a,b,c,d,e,f,g,h,i,j,k,l,m
Coyne, D
a,b,c,d,e,f,g,h,i,j,k,l,m
Drews, G
a,b,c,d,e,f,g,h,i,j,k,l,m
Engler, A
a,b,c,d,e,f,g,h,i,j,k,l,m
Fairfield, K H
a,b,c,d,e,f,g,h,i,j,k,l,m
Folger, G
a,b,c,d,e,f,g,h,i,j,k,l,m
Fridman, A
a,b,c,d,e,f,g,h,i,j,k,l,m
Gaiser, J
a,b,c,d,e,f,g,h,i,j,k,l,m
Gelphman, D
a,b,c,d,e,f,g,h,i,j,k,l,m
Glaser, G
a,b,c,d,e,f,g,h,i,j,k,l,m
Godfrey, G
a,b,c,d,e,f,g,h,i,j,k,l,m
Heimlich, F H
a,b,c,d,e,f,g,h,i,j,k,l,m
Hofstadter, R
a,b,c,d,e,f,g,h,i,j,k,l,m
Irion, J
a,b,c,d,e,f,g,h,i,j,k,l,m
Jakubowski, Z
a,b,c,d,e,f,g,h,i,j,k,l,m
Karch, K
a,b,c,d,e,f,g,h,i,j,k,l,m
Keh, S
a,b,c,d,e,f,g,h,i,j,k,l,m
Kilian, H
a,b,c,d,e,f,g,h,i,j,k,l,m
Kirkbride, I
a,b,c,d,e,f,g,h,i,j,k,l,m
Kloiber, T
a,b,c,d,e,f,g,h,i,j,k,l,m
Kobel, M
a,b,c,d,e,f,g,h,i,j,k,l,m
Koch, W
a,b,c,d,e,f,g,h,i,j,k,l,m
Konig A C
a,b,c,d,e,f,g,h,i,j,k,l,m
Konigsmann K
a,b,c,d,e,f,g,h,i,j,k,l,m
Kraemer, R W
a,b,c,d,e,f,g,h,i,j,k,l,m
Krger S
a,b,c,d,e,f,g,h,i,j,k,l,m
Landi, G
a,b,c,d,e,f,g,h,i,j,k,l,m
Lee, R
a,b,c,d,e,f,g,h,i,j,k,l,m
Leffler, S
a,b,c,d,e,f,g,h,i,j,k,l,m
Lekebusch, R
a,b,c,d,e,f,g,h,i,j,k,l,m
Lockman, W
a,b,c,d,e,f,g,h,i,j,k,l,m
Lowe, S
a,b,c,d,e,f,g,h,i,j,k,l,m
Lurz, B
a,b,c,d,e,f,g,h,i,j,k,l,m
Marlow, D
a,b,c,d,e,f,g,h,i,j,k,l,m
Marsiske, H
a,b,c,d,e,f,g,h,i,j,k,l,m
Maschmann, W
a,b,c,d,e,f,g,h,i,j,k,l,m
McBride, P
a,b,c,d,e,f,g,h,i,j,k,l,m
Messing, F
a,b,c,d,e,f,g,h,i,j,k,l,m
Metzger, W J
a,b,c,d,e,f,g,h,i,j,k,l,m
Meyer, H
a,b,c,d,e,f,g,h,i,j,k,l,m
Monteleoni, B
a,b,c,d,e,f,g,h,i,j,k,l,m
Nernst, R
a,b,c,d,e,f,g,h,i,j,k,l,m
Niczyporuk, B
a,b,c,d,e,f,g,h,i,j,k,l,m
Nowak, G
a,b,c,d,e,f,g,h,i,j,k,l,m
Peck, C
a,b,c,d,e,f,g,h,i,j,k,l,m
Pelfer, P G
a,b,c,d,e,f,g,h,i,j,k,l,m
Pollock, B
a,b,c,d,e,f,g,h,i,j,k,l,m
Porter, F C
a,b,c,d,e,f,g,h,i,j,k,l,m
Prindle, D
a,b,c,d,e,f,g,h,i,j,k,l,m
Ratoff, P
a,b,c,d,e,f,g,h,i,j,k,l,m
Reidenbach, M
a,b,c,d,e,f,g,h,i,j,k,l,m
Renger, B
a,b,c,d,e,f,g,h,i,j,k,l,m
Rippich, C
a,b,c,d,e,f,g,h,i,j,k,l,m
Scheer, M
a,b,c,d,e,f,g,h,i,j,k,l,m
Schmitt, P
a,b,c,d,e,f,g,h,i,j,k,l,m
Schotanus, J
a,b,c,d,e,f,g,h,i,j,k,l,m
Schtte J
a,b,c,d,e,f,g,h,i,j,k,l,m
Schwarz, A
a,b,c,d,e,f,g,h,i,j,k,l,m
Selonke, F
a,b,c,d,e,f,g,h,i,j,k,l,m
Sievers, D
a,b,c,d,e,f,g,h,i,j,k,l,m
Skwarnicki, T
a,b,c,d,e,f,g,h,i,j,k,l,m
Stock, V
a,b,c,d,e,f,g,h,i,j,k,l,m
Strauch, K
a,b,c,d,e,f,g,h,i,j,k,l,m
Strohbusch, U
a,b,c,d,e,f,g,h,i,j,k,l,m
Tompkins, J
a,b,c,d,e,f,g,h,i,j,k,l,m
Trost, H J
a,b,c,d,e,f,g,h,i,j,k,l,m
Van De Walle, R T
a,b,c,d,e,f,g,h,i,j,k,l,m
Vogel, H
a,b,c,d,e,f,g,h,i,j,k,l,m
Voigt, A
a,b,c,d,e,f,g,h,i,j,k,l,m
Volland, U
a,b,c,d,e,f,g,h,i,j,k,l,m
Wachs, K
a,b,c,d,e,f,g,h,i,j,k,l,m
Wacker, K
a,b,c,d,e,f,g,h,i,j,k,l,m
Walk, W
a,b,c,d,e,f,g,h,i,j,k,l,m
Wegener, H
a,b,c,d,e,f,g,h,i,j,k,l,m
Zschorsch, P
a,b,c,d,e,f,g,h,i,j,k,l,m
more..
|
-
3
-
-
84927434211
-
-
More information about this analysis can be found in D. Williams, Ph. D. thesis, Harvard University, 1987.
-
-
-
-
7
-
-
84927434210
-
-
The measured energy Emeas of each photon has been corrected using the formula Ecorr= Emeas/ [1+ 0.0137 ln ( Emeas/ Ebeam)]. The use of this formula correctly gives the π0 mass and the mass difference mϒ(2S) - mϒ(1S) in the reaction ϒ (2S) -> π0π0ϒ (1S), which were otherwise about 5% too low. The need for a correction stems from the extrapolation of the calibration energy (5 GeV from Bhabha events) down to the energy range 20–300 MeV. A discussion of this effect, and derivation of the form of the correction, can be found in D. Gelphman, Ph.D. thesis, Stanford University, 1985 (SLAC Report No. 286).
-
-
-
-
8
-
-
84927434209
-
-
For more detail about the roof counters, see D. Prindle, Ph.D. thesis, Carnegie-Mellon University, 1985.
-
-
-
-
9
-
-
84927434207
-
-
For this preliminary step, the transverse-momentum sum is calculated by assigning a momentum vector to each crystal with magnitude equal to the energy detected in that crystal. At all other stages of the analysis, transverse momentum is calculated from the reconstructed energies and direction of the showers.
-
-
-
-
10
-
-
84927434205
-
-
For preliminary results on the first observation of this process, see, edited by, S. Loken, World Scientific, Singapore, 1223 and H. Marsiske, contributed paper to that conference.
-
(1987)
Proceedings of the XXIII International Conference on High Energy Physics, Berkeley, California, 1986
-
-
Williams, D.1
-
14
-
-
84927434196
-
-
The average values of ( -q2) for accepted Monte Carlo events are 10 MeV2 for π0 events, 175 MeV2 for eta events, and 760 MeV2 for η prime events.
-
-
-
-
24
-
-
84927434195
-
-
J. Gaiser, Ph.D. thesis, Stanford University, 1983 (SLAC Report No. 255);
-
-
-
-
25
-
-
84927434194
-
-
R. Lee, Ph.D. thesis, Stanford University, 1985 (SLAC Report No. 282).
-
-
-
-
26
-
-
84927434193
-
-
For decays of slow particles, the opening angle is large and the mass resolution is dominated by the energy resolution. For typical π0 decays in multihadron events, the mass resolution is dominated by the resolution in the opening angle, and we observe an invariant-mass peak which is Gaussian.
-
-
-
-
28
-
-
84927434191
-
-
K. Wachs, Ph.D. thesis, Hamburg University, 1988 (DESY Report No. F31-88-01).
-
-
-
-
30
-
-
84927434190
-
-
Approximately 15% of the crystals were affected by this problem. The errors were restricted to true energies greater than 280 MeV in a single crystal, and for most of the affected crystals, a very limited energy range was recorded incorrectly. Since photons deposit roughly 70% of their energy in one crystal, this implies that photons with less than 400 MeV are rarely affected. The problem was in the read-out electronics and was subsequently studied with a pulse generator, so that its effect could be included in the Monte Carlo detector simulation. It is discussed in more detail in S. Lowe, Ph.D. thesis, Stanford University, 1986 (SLAC Report No. 307).
-
-
-
-
34
-
-
0000413224
-
-
The result in this paper includes the data of, and Nucl. Phys. B152, 1 (1979).
-
(1979)
Phys. Lett.
, vol.83 B
, pp. 131
-
-
Apel, W.1
-
38
-
-
84927434189
-
-
Earlier editions [e.g., contain a note discussing the reason the result of Ref. 40 is not included in the average.
-
(1978)
Phys. Lett.
, vol.75 B
, pp. 51
-
-
-
52
-
-
84927434187
-
-
We have corrected the value of Γ η->γγ to account for the most recent value of the η -> γ gamma branching ratio in Ref. 1.
-
-
-
-
55
-
-
84927434185
-
-
The value of Γ ηprime->γγ from this paper has been scaled to reflect the revised value of the branching ratio B {η prime -> γ γ}, discussed in Sec. V.
-
-
-
-
58
-
-
84927434176
-
-
The value of Γ ηprime->γγ from this paper has been scaled to reflect the revised value of the branching ratio Bηprime->γγ , discussed in Sec. V.
-
-
-
|