-
6
-
-
0002140105
-
Generating Rational Frames of Space curves via Hermite Interpolation with Pythagorean Hodograph Cubic Splines
-
eds. D.P. Choi, H.I. Choi, M.S. Kim and R.R. Martin, Bookplus press, Seoul, South Korea
-
B. Jüttler, Generating Rational Frames of Space curves via Hermite Interpolation with Pythagorean Hodograph Cubic Splines. In: Differential/Topological Techniques in Geo-metric Modeling and Processing'98, eds. D.P. Choi, H.I. Choi, M.S. Kim and R.R. Martin, Bookplus press, Seoul, South Korea, 1998, pp. 83-106
-
(1998)
Differential/Topological Techniques in Geo-metric Modeling and Processing'98
, pp. 83-106
-
-
Jüttler, B.1
-
7
-
-
0011142511
-
Rotation Minimizing Spherical Motions
-
eds. J. Lenarcic and M. Husty, Kluwer, Dordrecht
-
B. Jüttler, Rotation Minimizing Spherical Motions. In: Advances in Robot Kinematics: Analysis and Control, eds. J. Lenarcic and M. Husty, Kluwer, Dordrecht 1998, pp. 413-422
-
(1998)
Advances in Robot Kinematics: Analysis and Control
, pp. 413-422
-
-
Jüttler, B.1
-
8
-
-
0037913538
-
Cubic Pythagorean Hodograph Spline Curves and Applica-tions to Sweep Surface Modeling
-
B. Jüttler, C. Máurer, Cubic Pythagorean Hodograph Spline Curves and Applica-tions to Sweep Surface Modeling. Comput.-Aided Design 31, 73-83 (1999)
-
(1999)
Comput.-Aided Design
, vol.31
, pp. 73-83
-
-
Jüttler, B.1
Máurer, C.2
-
9
-
-
0344477430
-
A Quadratic-Programming Method for Removing Shape-Failures from Tensor-Product B-Spline Surfaces
-
P.D. Kaklis, G.D. Koras, A Quadratic-Programming Method for Removing Shape-Failures from Tensor-Product B-Spline Surfaces. Computing [Suppl] 13, 177-188 (1998)
-
(1998)
Computing [Suppl]
, vol.13
, pp. 177-188
-
-
Kaklis, P.D.1
Koras, G.D.2
-
11
-
-
0022811359
-
Two moving coordinate frames for sweeping along a 3D trajectory
-
F. Klok, Two moving coordinate frames for sweeping along a 3D trajectory. Comput. Aided Geom. Design 3, 217-229 (1986)
-
(1986)
Comput. Aided Geom. Design
, vol.3
, pp. 217-229
-
-
Klok, F.1
-
14
-
-
0031559375
-
Geometric Hermite interpolation with Tschirnhausen cu-bics
-
D.S. Meek, D.J. Walton, Geometric Hermite interpolation with Tschirnhausen cu-bics. J. Comput. Appl. Math. 81, 299-309 (1997)
-
(1997)
J. Comput. Appl. Math
, vol.81
, pp. 299-309
-
-
Meek, D.S.1
Walton, D.J.2
-
15
-
-
0039829556
-
Principal Surfaces
-
eds. T.N.T. Goodman and R.R. Martin, Information Geometers, Winchester
-
H. Pottmann, M. Wagner, Principal Surfaces. In: The Mathematics of Surfaces VII, eds. T.N.T. Goodman and R.R. Martin, Information Geometers, Winchester 1997, pp. 337-362
-
(1997)
The Mathematics of Surfaces VII
, pp. 337-362
-
-
Pottmann, H.1
Wagner, M.2
-
16
-
-
0011076635
-
Contributions to Motion Based Surface Design
-
H. Pottmann, M. Wagner, Contributions to Motion Based Surface Design. Int. J. of Shape Modeling 4, 183-196 (1998)
-
(1998)
Int. J. of Shape Modeling
, vol.4
, pp. 183-196
-
-
Pottmann, H.1
Wagner, M.2
-
17
-
-
84911323442
-
-
2nd ed., de Gruyter (Sammlung Góschen), Berlin
-
K. Strubecker, Differentialgeometrie I-III. 2nd ed., de Gruyter (Sammlung Góschen), Berlin 1964-1969
-
(1964)
Differentialgeometrie I-III
-
-
Strubecker, K.1
-
19
-
-
0031360079
-
Curves with Rational Frenet-Serret motion
-
M. Wagner, B. Ravani, Curves with Rational Frenet-Serret motion. Comput. Aided Geom. Design 15, 79-101 (1997)
-
(1997)
Comput. Aided Geom. Design
, vol.15
, pp. 79-101
-
-
Wagner, M.1
Ravani, B.2
-
20
-
-
0001288152
-
Robust computation of the rotation minimizing frame for sweep surface modeling
-
W. Wang, B. Joe, Robust computation of the rotation minimizing frame for sweep surface modeling. Comput.-Aided Design 29, 379-391 (1997)
-
(1997)
Comput.-Aided Design
, vol.29
, pp. 379-391
-
-
Wang, W.1
Joe, B.2
-
21
-
-
0041016243
-
Algebraische Bóschungslinien dritter und vierter Ordnung
-
W. Wunderlich, Algebraische Bóschungslinien dritter und vierter Ordnung. Sitzungs-ber., Abt. II, ósterr. Akad. Wiss., Math.-Naturw. Kl. 181, 353-376 (1973)
-
(1973)
Sitzungs-ber., Abt. II, ósterr. Akad. Wiss., Math.-Naturw. Kl
, vol.181
, pp. 353-376
-
-
Wunderlich, W.1
|