메뉴 건너뛰기




Volumn 14, Issue 1, 1994, Pages 115-133

Approximation and Estimation Bounds for Artificial Neural Networks

Author keywords

approximation theory; complexity regularization; estimation theory; Neural nets; statistical risk

Indexed keywords


EID: 0001325515     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1023/A:1022650905902     Document Type: Article
Times cited : (593)

References (29)
  • 2
    • 0001347323 scopus 로고
    • Complexity regularization with applications to artificial neural networks
    • G., Roussas, Kluwer Academic Publishers-Plenum Publishers, Boston, MA and Dordrecht, the Netherlands
    • (1990) Nonparametric Functional Estimation , pp. 561-576
    • Barron, A.R.1
  • 4
    • 84951649064 scopus 로고    scopus 로고
    • Barron, A. R. (1992). Neural net approximation. Proceedings of the Seventh Yale Workshop on Adaptive and Learning Systems, (pp.69–72). K. S. Narendra (ed.), Yale University.
  • 16
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training
    • (1992) Annals of Statistics , vol.20 , pp. 608-613
    • Jones, L.K.1
  • 17
  • 18
    • 84951649065 scopus 로고    scopus 로고
    • McCaffrey, D. F. & Gallant, A. R. (1991). Convergence rates for single hidden layer feedforward networks. Rand Corporation working paper, Santa Monica, California and Institute of Statistics Mimeograph Series, Number 2207, North Carolina State University.
  • 22
    • 84951649066 scopus 로고    scopus 로고
    • Pinsker, M. S. (1980). Optimal filtering of square-integrable signals on a background of Gaussian noise. Problems in Information Transmission, 16.
  • 29
    • 0025635525 scopus 로고
    • Connectionist nonparametric regression: multilayer feedforward networks can learn arbitrary mappings
    • (1990) Neural Networks , vol.3 , pp. 535-550
    • White, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.