-
2
-
-
85036302994
-
-
also see the erratum in P. G. de Gennes, The Physics of Liquid Crystals (Oxford University Press, London, 1974), p. 336, Ref. 20
-
also see the erratum in P. G. de Gennes, The Physics of Liquid Crystals (Oxford University Press, London, 1974), p. 336, Ref. 20.
-
-
-
-
7
-
-
0000008912
-
-
D. J. Tweet, R. Hołyst, B. D. Swanson, H. Stragier, and L. B. Sorensen, Phys. Rev. Lett. 65, 2157 (1990).PRLTAO
-
(1990)
Phys. Rev. Lett.
, vol.65
, pp. 2157
-
-
Tweet, D.J.1
Hołyst, R.2
Swanson, B.D.3
Stragier, H.4
Sorensen, L.B.5
-
12
-
-
0001221620
-
-
J. D. Shindler, E. A. Mol, A. Shalaginov, and W. H. de Jeu, Phys. Rev. Lett. 74, 722 (1995).PRLTAO
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 722
-
-
Shindler, J.D.1
Mol, E.A.2
Shalaginov, A.3
de Jeu, W.H.4
-
13
-
-
0030197105
-
-
E. A. L. Mol, J. D. Shindler, A. N. Shalaginov, and W. H. de Jeu, Phys. Rev. E 54, 536 (1996).PLEEE8
-
(1996)
Phys. Rev. E
, vol.54
, pp. 536
-
-
Mol, E.A.L.1
Shindler, J.D.2
Shalaginov, A.N.3
de Jeu, W.H.4
-
14
-
-
2742555984
-
-
A. Böttger, D. Frenkel, J. G. H. Joosten, and G. Krooshof, Phys. Rev. A 38, 6316 (1988).PLRAAN
-
(1988)
Phys. Rev. A
, vol.38
, pp. 6316
-
-
Böttger, A.1
Frenkel, D.2
Joosten, J.G.H.3
Krooshof, G.4
-
17
-
-
0000064881
-
-
B. D. Swanson, H. Stragier, D. J. Tweet, and L. B. Sorensen, Phys. Rev. Lett. 62, 909 (1989).PRLTAO
-
(1989)
Phys. Rev. Lett.
, vol.62
, pp. 909
-
-
Swanson, B.D.1
Stragier, H.2
Tweet, D.J.3
Sorensen, L.B.4
-
19
-
-
0000027948
-
-
E. B. Sirota, P. S. Pershan, L. B. Sorensen, and J. Collett, Phys. Rev. Lett. 55, 2039 (1985)
-
(1985)
Phys. Rev. Lett.
, vol.55
, pp. 2039
-
-
Sirota, E.B.1
Pershan, P.S.2
Sorensen, L.B.3
Collett, J.4
-
29
-
-
85036233726
-
-
P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, Oxford, 1993), pp. 418 and 419
-
P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, Oxford, 1993), pp. 418 and 419.
-
-
-
-
32
-
-
11644280485
-
-
C. Baumann, J. P. Marcerou, J. Prost, and C. Rouillon, Phys. Rev. Lett. 54, 1268 (1985).PRLTAO
-
(1985)
Phys. Rev. Lett.
, vol.54
, pp. 1268
-
-
Baumann, C.1
Marcerou, J.P.2
Prost, J.3
Rouillon, C.4
-
33
-
-
11644273925
-
-
showed that there are logarithmically diverging corrections to this approximation. However, the fractional changes are of order [Formula Presented] where q is the wavelength under consideration, and [Formula Presented] For the typical smectic values [Formula Presented] [Formula Presented] one finds that at room temperature [Formula Presented] Hence, the fractional change due to this logarithmic divergence at [Formula Presented] is only 14%. This corresponds to a length scale [Formula Presented] of [Formula Presented] Of course, larger q’s have even smaller corrections. So the harmonic approximation is a good one, except for unreasonably small q’s, which are not probed in our experiment. PLRAAN
-
This is, strictly speaking, not quite right: G. Grinstein and R. Pelcovits, Phys. Rev. A 26, 915 (1982), showed that there are logarithmically diverging corrections to this approximation. However, the fractional changes are of order (5w/64π)ln(q0/q), where q is the wavelength under consideration, and w=kBTB1/2/K3/2. For the typical smectic values B∼5×107 dyn/cm2 and K∼5×10-7 dyn, one finds that at room temperature w∼0.8. Hence, the fractional change due to this logarithmic divergence at q=10-3q0 is only 14%. This corresponds to a length scale 2π/q of 103 (2π/q0)=3 μm. Of course, larger q’s have even smaller corrections. So the harmonic approximation is a good one, except for unreasonably small q’s, which are not probed in our experiment.PLRAAN
-
(1982)
Phys. Rev. A
, vol.26
, pp. 915
-
-
Grinstein, G.1
Pelcovits, R.2
-
34
-
-
3342923489
-
-
This can be justified as well—as shown by G. Mazenko, S. Ramaswamy, and J. Toner, Phys. Rev. Lett. 49, 51 (1982), and
-
(1982)
Phys. Rev. Lett.
, vol.49
, pp. 51
-
-
Mazenko, G.1
Ramaswamy, S.2
Toner, J.3
-
36
-
-
85036315038
-
-
Although there are radical changes to the dynamics due to nonlinearities in most wave-vector and frequency regimes, those regimes that dominate the u fluctuations—which prove to be the regime [Formula Presented]—are unaffected by the nonlinearities, except for the weak logarithmic Grinstein-Pelcovits effects on the statics alluded to earlier
-
Although there are radical changes to the dynamics due to nonlinearities in most wave-vector and frequency regimes, those regimes that dominate the u fluctuations—which prove to be the regime ω∼qz∼q⊥2—are unaffected by the nonlinearities, except for the weak logarithmic Grinstein-Pelcovits effects on the statics alluded to earlier.
-
-
-
-
37
-
-
85036415869
-
-
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980), pp. 125 and 951
-
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980), pp. 125 and 951.
-
-
-
|