메뉴 건너뛰기




Volumn 14, Issue 4, 1997, Pages 415-438

Ergodic problem for the Hamilton-Jacobi-Bellman equation. I. Existence of the ergodic attractor

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0001286075     PISSN: 02941449     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0294-1449(97)80134-5     Document Type: Article
Times cited : (45)

References (17)
  • 2
    • 0000088873 scopus 로고
    • Fully nonlinear neumann type boundary conditions for first-order Hamilton-Jacobi equations
    • G. BARLES and P. L. LIONS, Fully nonlinear Neumann type boundary conditions for first-order Hamilton-Jacobi equations, Nonlinear Anal. Theory Methods Appl., Vol. 16, 1991, pp. 143-153.
    • (1991) Nonlinear Anal. Theory Methods Appl. , vol.16 , pp. 143-153
    • Barles, G.1    Lions, P.L.2
  • 4
    • 84966227140 scopus 로고
    • Hamilton-Jacobi equations with state constraints
    • I. CAPUZZO-DOLCETTA and P. L. LIONS, Hamilton-Jacobi equations with state constraints, Trans. Amer. Math. Soc., Vol. 318, 1990, pp. 643-683.
    • (1990) Trans. Amer. Math. Soc. , vol.318 , pp. 643-683
    • Capuzzo-Dolcetta, I.1    Lions, P.L.2
  • 7
    • 84967758647 scopus 로고
    • Viscosity solutions of Hamilton-Jacobi equations
    • M. G. CRANDALL and P. L. LIONS, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., Vol. 277, 1983, pp. 1-42.
    • (1983) Trans. Amer. Math. Soc. , vol.277 , pp. 1-42
    • Crandall, M.G.1    Lions, P.L.2
  • 8
    • 38249016334 scopus 로고
    • On oblique derivative problems for fully nonlinear second-order elliptic partial differential equations on non smooth domains
    • P. DUPUIS and H. ISHII, On oblique derivative problems for fully nonlinear second-order elliptic partial differential equations on non smooth domains, Nonlinear Anal. Theory Methods Appl., Vol. 15, 1990, pp. 1123-1138.
    • (1990) Nonlinear Anal. Theory Methods Appl. , vol.15 , pp. 1123-1138
    • Dupuis, P.1    Ishii, H.2
  • 10
    • 0003292086 scopus 로고
    • Generalized solutions of Hamilton-Jacobi equations
    • Pitman, Boston, MA
    • P.L. LIONS, Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics, Vol. 69, Pitman, Boston, MA, 1982.
    • (1982) Research Notes in Mathematics , vol.69
    • Lions, P.L.1
  • 11
    • 84972559573 scopus 로고
    • Neumann type boundary conditions for Hamilmton-Jacobi equations
    • P. L. LIONS, Neumann type boundary conditions for Hamilmton-Jacobi equations, Duke J. Math., Vol. 52, 1985, pp. 793-820.
    • (1985) Duke J. Math , vol.52 , pp. 793-820
    • Lions, P.L.1
  • 12
    • 0022751724 scopus 로고
    • Quasi-variational inequalities and ergodic impulse control
    • P. L. LIONS and B. PERTHAME, Quasi-variational inequalities and ergodic impulse control, SIAM J. Control and Optimization, Vol. 24, 1986, pp. 604-615.
    • (1986) SIAM J. Control and Optimization , vol.24 , pp. 604-615
    • Lions, P.L.1    Perthame, B.2
  • 13
    • 0019560125 scopus 로고
    • On some impulse control problems with ion run average control
    • M. ROBIN, On some impulse control problems with Ion run average control, SIAM J. Control and Optimization, Vol. 19, 1981, pp. 333-358.
    • (1981) SIAM J. Control and Optimization , vol.19 , pp. 333-358
    • Robin, M.1
  • 15
    • 0022715502 scopus 로고
    • Optimal control with state-space constraint I
    • H. M. SONER, Optimal control with state-space constraint I, SIAM J. Control Optim., Vol. 24, 1986, pp. 552-562; Optimal control with state-space constraint II, SIAM J. Control Optim., Vol. 24, 1986, pp. 1110-1122.
    • (1986) SIAM J. Control Optim. , vol.24 , pp. 552-562
    • Soner, H.M.1
  • 16
    • 0022806544 scopus 로고
    • Optimal control with state-space constraint II
    • H. M. SONER, Optimal control with state-space constraint I, SIAM J. Control Optim., Vol. 24, 1986, pp. 552-562; Optimal control with state-space constraint II, SIAM J. Control Optim., Vol. 24, 1986, pp. 1110-1122.
    • (1986) SIAM J. Control Optim. , vol.24 , pp. 1110-1122


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.