메뉴 건너뛰기




Volumn 61, Issue 4, 2000, Pages 3750-3756

Efficient implementation of the Gaussian kernel algorithm in estimating invariants and noise level from noisy time series data

Author keywords

[No Author keywords available]

Indexed keywords

GAUSSIAN DISTRIBUTION; TIME SERIES;

EID: 0001238862     PISSN: 1063651X     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevE.61.3750     Document Type: Article
Times cited : (78)

References (30)
  • 1
    • 0010893550 scopus 로고
    • N. B. Abraham, A. M. Albano, A. Passamante, P. E. Rapp, Plenum, New York
    • Measures of Complexity and Chaos, edited by N. B. Abraham, A. M. Albano, A. Passamante, and P. E. Rapp (Plenum, New York, 1989).
    • (1989) Measures of Complexity and Chaos
  • 19
    • 0000779360 scopus 로고
    • D. A. Rand, L. S. Young, Springer-Verlag, New York
    • F. Takens, in Dynamical Systems and Turbulence, Warwick, 1980, edited by D. A. Rand and L. S. Young (Springer-Verlag, New York, 1981), Vol. 898, pp. 366–381.
    • (1981) Dynamical Systems and Turbulence, Warwick, 1980 , vol.898 , pp. 366-381
    • Takens, F.1
  • 27
    • 85036175437 scopus 로고    scopus 로고
    • A large error in estimating DK, and σ may result. This is because Eq. (17) is derived under the condition that (Formula presented) and (Formula presented) This is not the case when (Formula presented) is numerically computed
    • A large error in estimating D, K, and σ may result. This is because Eq. (17) is derived under the condition that (Formula presented) and (Formula presented) This is not the case when (Formula presented) is numerically computed.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.