-
1
-
-
33751386357
-
-
Vaia, R. A.; Ishii, H.; Giannelis, E. P. Chem. Mater. 1993, 5, 1694.
-
(1993)
Chem. Mater.
, vol.5
, pp. 1694
-
-
Vaia, R.A.1
Ishii, H.2
Giannelis, E.P.3
-
2
-
-
0029255951
-
-
Vaia, R. A.; Vasudevan, S.; Krawiec, W.; Scanlon, L. G.; Giannelis, E. P. Adv. Mater. 1995, 7, 154.
-
(1995)
Adv. Mater.
, vol.7
, pp. 154
-
-
Vaia, R.A.1
Vasudevan, S.2
Krawiec, W.3
Scanlon, L.G.4
Giannelis, E.P.5
-
3
-
-
0029409714
-
-
Vaia, R. A.; Jandt, K. D; Kramer, E. J.; Giannelis, E. P. Macromolecules 1995, 28, 8080.
-
(1995)
Macromolecules
, vol.28
, pp. 8080
-
-
Vaia, R.A.1
Jandt, K.D.2
Kramer, E.J.3
Giannelis, E.P.4
-
7
-
-
33748550593
-
-
For recent review of nanocomposites, see: Komarneni, S. J. Mater. Chem. 1992, 2, 1219.
-
(1992)
J. Mater. Chem.
, vol.2
, pp. 1219
-
-
Komarneni, S.1
-
9
-
-
0027656340
-
-
Yano, K.; Usuki, A.; Kurauchi. T.; Kamigaito, O. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 2493.
-
(1993)
J. Polym. Sci., Part A: Polym. Chem.
, vol.31
, pp. 2493
-
-
Yano, K.1
Usuki, A.2
Kurauchi, T.3
Kamigaito, O.4
-
11
-
-
84989743905
-
-
Messersmith, P. B.; Giannelis, E. P. J. Polym. Sci., Part A: Polym. Chem. 1995, 33, 1047.
-
(1995)
J. Polym. Sci., Part A: Polym. Chem.
, vol.33
, pp. 1047
-
-
Messersmith, P.B.1
Giannelis, E.P.2
-
12
-
-
85033811026
-
-
note
-
3 to describe the microstructural features of the OLSs. The silicate nominal particle (agglomerate) is comprised of an agglomeration of smaller oblong-shaped particles, referred to as primary particles. The primary particles consist of a compact face-to-face stacking or low-angle intergrowth of individual silicate crystallites (also known as tactoids). The crystallites consist of a coherent stacking of individual silicate layers.
-
-
-
-
13
-
-
33751159000
-
-
Vaia, R. A.; Teukolsky, R. K.; Giannelis, E. P., Chem. Mater. 1994, 6, 1017.
-
(1994)
Chem. Mater.
, vol.6
, pp. 1017
-
-
Vaia, R.A.1
Teukolsky, R.K.2
Giannelis, E.P.3
-
15
-
-
85033813157
-
-
note
-
Uncured Spurr epoxy and acrylic-based embedding formulations have been observed during embedding to intercalated OLS. Similar observations were reported in ref 16.
-
-
-
-
18
-
-
0024568010
-
-
Marcks, C. H.; Waschsmuth, H.; Reichenbach, H. G. V. Clay Miner. 1989, 24, 23.
-
(1989)
Clay Miner.
, vol.24
, pp. 23
-
-
Marcks, C.H.1
Waschsmuth, H.2
Reichenbach, H.G.V.3
-
21
-
-
0003795691
-
-
Legrand, A. P., Flandrois, S., Eds.; Plenum: New York
-
Pinnavaia, T. J. In: Chemical Physics of Intercalation; Legrand, A. P., Flandrois, S., Eds.; Plenum: New York, 1987.
-
(1987)
Chemical Physics of Intercalation
-
-
Pinnavaia, T.J.1
-
22
-
-
0001118411
-
-
Hydrous Phyllosilicates; Bailey, S. W., Ed.; Mineralogical Society of America, Washington, DC
-
Güven, N. In Hydrous Phyllosilicates; Bailey, S. W., Ed.; Mineralogical Society of America, Washington, DC, 1988; Reviews in Mineralogy, Vol. 19, pp 497-560.
-
(1988)
Reviews in Mineralogy
, vol.19
, pp. 497-560
-
-
Güven, N.1
-
23
-
-
85033806364
-
-
note
-
25 We assume the contribution to peak width due to instrumental broadening is constant for 2θ = 2-4°.
-
-
-
-
26
-
-
85033830261
-
-
note
-
The behavior of the basal reflections in Figure 1 is representative of polystyrene melt intercalation of F18 at different temperatures and molecular weights as depicted in ref 3. In general, the initial intercalated basal reflection is 10-30% wider than the unintercalated reflection, and its breadth is within 5-10% of the original unintercalated reflection by χ ∼ 0.2-0.4.
-
-
-
-
28
-
-
0019010205
-
-
Parry, G. S. Physica 1981, 105B, 261.
-
(1981)
Physica
, vol.105 B
, pp. 261
-
-
Parry, G.S.1
|