-
2
-
-
0000293403
-
-
1/2 = 6 s at 30 °C): Cope, A. C.; Ganellin, C. R.; Johnson, H. W., Jr.; Van Auken, T. V.; Winkler, H. J. S. J. Am. Chem. Soc. 1965, 87, 3644-3649. See also refs 3 and 11.
-
(1965)
J. Am. Chem. Soc.
, vol.87
, pp. 3644-3649
-
-
Cope, A.C.1
Ganellin, C.R.2
Johnson H.W., Jr.3
Van Auken, T.V.4
Winkler, H.J.S.5
-
3
-
-
0008823470
-
-
For analysis of the diastereoisomerism of substituted racemic trans-cyclononenes, see: Reese, C. B.; Shaw, A. Chem. Commun. 1970, 1367-1368. Reese, C. B.; Shaw, A. J. Chem. Soc., Perkin Trans, I 1975, 2422-2429. Further observations of diastereomeric trans-cyclononenes: Itoh, T.; Jitsukawa, K.; Kaneda, K.; Teranishi, S. J. Am. Chem. Soc. 1979, 101, 159-169. Loozen, H. J. J.; de Haan, J, W.; Buck, H. M.; J. Org. Chem. 1977, 42, 418-422. Loozen, H. J. J.; Robben, W. M. M.; Richter, T. L.; Buck, H. M. J. Org. Chem. 1976, 41, 384-385. For a synthetic application of this effect in nine-membered heterocycles, see: Sudau, A.; Münch, W.; Nubbemeyer, U. J. Org. Chem. 2000, 65, 1710-1720.
-
(1970)
Chem. Commun.
, pp. 1367-1368
-
-
Reese, C.B.1
Shaw, A.2
-
4
-
-
37049116909
-
-
For analysis of the diastereoisomerism of substituted racemic trans-cyclononenes, see: Reese, C. B.; Shaw, A. Chem. Commun. 1970, 1367-1368. Reese, C. B.; Shaw, A. J. Chem. Soc., Perkin Trans, I 1975, 2422-2429. Further observations of diastereomeric trans-cyclononenes: Itoh, T.; Jitsukawa, K.; Kaneda, K.; Teranishi, S. J. Am. Chem. Soc. 1979, 101, 159-169. Loozen, H. J. J.; de Haan, J, W.; Buck, H. M.; J. Org. Chem. 1977, 42, 418-422. Loozen, H. J. J.; Robben, W. M. M.; Richter, T. L.; Buck, H. M. J. Org. Chem. 1976, 41, 384-385. For a synthetic application of this effect in nine-membered heterocycles, see: Sudau, A.; Münch, W.; Nubbemeyer, U. J. Org. Chem. 2000, 65, 1710-1720.
-
(1975)
J. Chem. Soc., Perkin Trans, I
, pp. 2422-2429
-
-
Reese, C.B.1
Shaw, A.2
-
5
-
-
0342881496
-
-
For analysis of the diastereoisomerism of substituted racemic trans-cyclononenes, see: Reese, C. B.; Shaw, A. Chem. Commun. 1970, 1367-1368. Reese, C. B.; Shaw, A. J. Chem. Soc., Perkin Trans, I 1975, 2422-2429. Further observations of diastereomeric trans-cyclononenes: Itoh, T.; Jitsukawa, K.; Kaneda, K.; Teranishi, S. J. Am. Chem. Soc. 1979, 101, 159-169. Loozen, H. J. J.; de Haan, J, W.; Buck, H. M.; J. Org. Chem. 1977, 42, 418-422. Loozen, H. J. J.; Robben, W. M. M.; Richter, T. L.; Buck, H. M. J. Org. Chem. 1976, 41, 384-385. For a synthetic application of this effect in nine-membered heterocycles, see: Sudau, A.; Münch, W.; Nubbemeyer, U. J. Org. Chem. 2000, 65, 1710-1720.
-
(1979)
J. Am. Chem. Soc.
, vol.101
, pp. 159-169
-
-
Itoh, T.1
Jitsukawa, K.2
Kaneda, K.3
Teranishi, S.4
-
6
-
-
0008838179
-
-
For analysis of the diastereoisomerism of substituted racemic trans-cyclononenes, see: Reese, C. B.; Shaw, A. Chem. Commun. 1970, 1367-1368. Reese, C. B.; Shaw, A. J. Chem. Soc., Perkin Trans, I 1975, 2422-2429. Further observations of diastereomeric trans-cyclononenes: Itoh, T.; Jitsukawa, K.; Kaneda, K.; Teranishi, S. J. Am. Chem. Soc. 1979, 101, 159-169. Loozen, H. J. J.; de Haan, J, W.; Buck, H. M.; J. Org. Chem. 1977, 42, 418-422. Loozen, H. J. J.; Robben, W. M. M.; Richter, T. L.; Buck, H. M. J. Org. Chem. 1976, 41, 384-385. For a synthetic application of this effect in nine-membered heterocycles, see: Sudau, A.; Münch, W.; Nubbemeyer, U. J. Org. Chem. 2000, 65, 1710-1720.
-
(1977)
J. Org. Chem.
, vol.42
, pp. 418-422
-
-
Loozen, H.J.J.1
De Haan, J.W.2
Buck, H.M.3
-
7
-
-
0008868507
-
-
For analysis of the diastereoisomerism of substituted racemic trans-cyclononenes, see: Reese, C. B.; Shaw, A. Chem. Commun. 1970, 1367-1368. Reese, C. B.; Shaw, A. J. Chem. Soc., Perkin Trans, I 1975, 2422-2429. Further observations of diastereomeric trans-cyclononenes: Itoh, T.; Jitsukawa, K.; Kaneda, K.; Teranishi, S. J. Am. Chem. Soc. 1979, 101, 159-169. Loozen, H. J. J.; de Haan, J, W.; Buck, H. M.; J. Org. Chem. 1977, 42, 418-422. Loozen, H. J. J.; Robben, W. M. M.; Richter, T. L.; Buck, H. M. J. Org. Chem. 1976, 41, 384-385. For a synthetic application of this effect in nine-membered heterocycles, see: Sudau, A.; Münch, W.; Nubbemeyer, U. J. Org. Chem. 2000, 65, 1710-1720.
-
(1976)
J. Org. Chem.
, vol.41
, pp. 384-385
-
-
Loozen, H.J.J.1
Robben, W.M.M.2
Richter, T.L.3
Buck, H.M.4
-
8
-
-
0034708730
-
-
For analysis of the diastereoisomerism of substituted racemic trans-cyclononenes, see: Reese, C. B.; Shaw, A. Chem. Commun. 1970, 1367-1368. Reese, C. B.; Shaw, A. J. Chem. Soc., Perkin Trans, I 1975, 2422-2429. Further observations of diastereomeric trans-cyclononenes: Itoh, T.; Jitsukawa, K.; Kaneda, K.; Teranishi, S. J. Am. Chem. Soc. 1979, 101, 159-169. Loozen, H. J. J.; de Haan, J, W.; Buck, H. M.; J. Org. Chem. 1977, 42, 418-422. Loozen, H. J. J.; Robben, W. M. M.; Richter, T. L.; Buck, H. M. J. Org. Chem. 1976, 41, 384-385. For a synthetic application of this effect in nine-membered heterocycles, see: Sudau, A.; Münch, W.; Nubbemeyer, U. J. Org. Chem. 2000, 65, 1710-1720.
-
(2000)
J. Org. Chem.
, vol.65
, pp. 1710-1720
-
-
Sudau, A.1
Münch, W.2
Nubbemeyer, U.3
-
9
-
-
0003116430
-
-
trans-Cycloalkenes are classified as planar chiral compounds: Schlögl, K. Top. Curr. Chem. 1984, 125, 27-62. Nakazaki, M.; Yamamoto, K.; Naemura, K. Top. Curr. Chem. 1984, 125, 1-25.
-
(1984)
Top. Curr. Chem.
, vol.125
, pp. 27-62
-
-
Schlögl, K.1
-
10
-
-
0008859872
-
-
trans-Cycloalkenes are classified as planar chiral compounds: Schlögl, K. Top. Curr. Chem. 1984, 125, 27-62. Nakazaki, M.; Yamamoto, K.; Naemura, K. Top. Curr. Chem. 1984, 125, 1-25.
-
(1984)
Top. Curr. Chem.
, vol.125
, pp. 1-25
-
-
Nakazaki, M.1
Yamamoto, K.2
Naemura, K.3
-
12
-
-
0020454251
-
-
Buck, J. C.; Ellis, F.; North, P. C. Tetrahedron Lett. 1982, 23, 4161-4162.
-
(1982)
Tetrahedron Lett.
, vol.23
, pp. 4161-4162
-
-
Buck, J.C.1
Ellis, F.2
North, P.C.3
-
13
-
-
0000854142
-
-
Reviews: Hoppe, D.; Hense, T. Angew. Chem. 1997, 109, 2376-2410: Angew. Chem., Int. Ed. Engl. 1997, 36, 2282-2316. Beak, P.; Basu, A.; Gallagher, D. J.; Park, Y. S.; Thayumanavan, S. Acc. Chem. Res. 1996, 29, 552-560.
-
(1997)
Angew. Chem.
, vol.109
, pp. 2376-2410
-
-
Reviews Hoppe, D.1
Hense, T.2
-
14
-
-
0030694010
-
-
Reviews: Hoppe, D.; Hense, T. Angew. Chem. 1997, 109, 2376-2410: Angew. Chem., Int. Ed. Engl. 1997, 36, 2282-2316. Beak, P.; Basu, A.; Gallagher, D. J.; Park, Y. S.; Thayumanavan, S. Acc. Chem. Res. 1996, 29, 552-560.
-
(1997)
Angew. Chem., Int. Ed. Engl.
, vol.36
, pp. 2282-2316
-
-
-
15
-
-
0000679903
-
-
Reviews: Hoppe, D.; Hense, T. Angew. Chem. 1997, 109, 2376-2410: Angew. Chem., Int. Ed. Engl. 1997, 36, 2282-2316. Beak, P.; Basu, A.; Gallagher, D. J.; Park, Y. S.; Thayumanavan, S. Acc. Chem. Res. 1996, 29, 552-560.
-
(1996)
Acc. Chem. Res.
, vol.29
, pp. 552-560
-
-
Beak, P.1
Basu, A.2
Gallagher, D.J.3
Park, Y.S.4
Thayumanavan, S.5
-
16
-
-
0001563071
-
-
In all known examples, deprotonation of O-allylic carbamates with nBuLi/(-)-sparteine led to the S-configurated organolithium compound. For example: (a) Deiters, A.; Hoppe, D. Angew. Chem. 1999, 111, 529-532; Angew. Chem., Int. Ed. 1999, 38, 546-548.
-
(1999)
Angew. Chem.
, vol.111
, pp. 529-532
-
-
Deiters, A.1
Hoppe, D.2
-
17
-
-
0033558172
-
-
In all known examples, deprotonation of O-allylic carbamates with nBuLi/(-)-sparteine led to the S-configurated organolithium compound. For example: (a) Deiters, A.; Hoppe, D. Angew. Chem. 1999, 111, 529-532; Angew. Chem., Int. Ed. 1999, 38, 546-548.
-
(1999)
Angew. Chem., Int. Ed.
, vol.38
, pp. 546-548
-
-
-
19
-
-
0032706536
-
-
and references therein
-
This represents the typical stereochemical course in substitution reactions of allyllithium compounds. See ref 7b and Weisenburger, G. A.; Faibish, N. C.; Pippel, D. A.; Beak, P. J. Am. Chem. Soc. 1999, 121, 9522-9530 and references therein.
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 9522-9530
-
-
Weisenburger, G.A.1
Faibish, N.C.2
Pippel, D.A.3
Beak, P.4
-
20
-
-
0041378381
-
-
note
-
When the reaction was carried out with nBuLi/TMEDA in ether at -78 °C, rac-5 was obtained in 81% yield.
-
-
-
-
21
-
-
0000163012
-
-
(a) Hoppe, D. Angew. Chem. 1984, 96, 930-946; Angew. Chem., Int. Ed. Engl. 1984, 23, 932-948.
-
(1984)
Angew. Chem.
, vol.96
, pp. 930-946
-
-
Hoppe, D.1
-
22
-
-
0021558291
-
-
(a) Hoppe, D. Angew. Chem. 1984, 96, 930-946; Angew. Chem., Int. Ed. Engl. 1984, 23, 932-948.
-
(1984)
Angew. Chem., Int. Ed. Engl.
, vol.23
, pp. 932-948
-
-
-
23
-
-
0003287165
-
-
(b) For X-ray crystal structure analysis of a lithiated allylic carbamate, see: Marsch, M.; Harms. K.; Zschage O.; Hoppe D.; Boche, G. Angew. Chem. 1991, 103, 338-339; Angew. Chem., Int. Ed. Engl. 1991, 30, 321-322.
-
(1991)
Angew. Chem.
, vol.103
, pp. 338-339
-
-
Marsch, M.1
Harms, K.2
Zschage, O.3
Hoppe, D.4
Boche, G.5
-
24
-
-
33748217647
-
-
(b) For X-ray crystal structure analysis of a lithiated allylic carbamate, see: Marsch, M.; Harms. K.; Zschage O.; Hoppe D.; Boche, G. Angew. Chem. 1991, 103, 338-339; Angew. Chem., Int. Ed. Engl. 1991, 30, 321-322.
-
(1991)
Angew. Chem., Int. Ed. Engl.
, vol.30
, pp. 321-322
-
-
-
27
-
-
0042380341
-
-
note
-
Crystals suitable for X-ray diffraction analysis were grown by vapor diffusion of pentane into an ethereal solution of (P,R)-5.
-
-
-
-
28
-
-
0000420463
-
-
A similar structure has been also investigated for trans-cyclononene derivatives: Manor, P. C.; Shoemaker, D. P.; Parkes, A. S. J. Am. Chem. Soc. 1970, 92, 5260-5262; Gavin, R. M., Jr.; Wang, Z. F. J. Am. Chem. Soc. 1973, 95, 1425-1429.
-
(1970)
J. Am. Chem. Soc.
, vol.92
, pp. 5260-5262
-
-
Manor, P.C.1
Shoemaker, D.P.2
Parkes, A.S.3
-
29
-
-
0008859874
-
-
A similar structure has been also investigated for trans-cyclononene derivatives: Manor, P. C.; Shoemaker, D. P.; Parkes, A. S. J. Am. Chem. Soc. 1970, 92, 5260-5262; Gavin, R. M., Jr.; Wang, Z. F. J. Am. Chem. Soc. 1973, 95, 1425-1429.
-
(1973)
J. Am. Chem. Soc.
, vol.95
, pp. 1425-1429
-
-
Gavin R.M., Jr.1
Wang, Z.F.2
-
30
-
-
0041879113
-
-
note
-
One of the referees pointed out that the structure of the initial cyclization product (+)-(M,R)-5 has not been rigorously assigned. The configuration of (+)-(M.R)-5 could not determined directly by NMR methods due to line broadening, caused by dynamic processes. However, the (2Z,7E)-configuration of (+)-(M,R)-5 results inevitably from the open-chain precursor (2Z.7E)-3. Thus, both cyclic species cannot differ in double bond geometry. When considering possible reversible interconversions which can be affiliated to the observed energetic barrier and the enthalpy difference, we were unable to determine processes other than epimerization of the E double bond.
-
-
-
-
32
-
-
0041378380
-
-
note
-
The enantiomeric ratio of 7 was determined by GLC on a chiral stationary phase (Beta-Dex 120, Supelco, USA).
-
-
-
-
33
-
-
85088882620
-
-
note
-
1H NMR.
-
-
-
-
34
-
-
0041378354
-
-
note
-
To the best of our knowledge, this seems to be the highest equilibrium constant K reported for the epimerization of a monosubstituted frans-cycloalkene.
-
-
-
-
35
-
-
85088882517
-
-
note
-
1H NMR after suitable time intervals and calculating an exponential regression of the decay (first-order process) by the use of Microcal Origin (Microcal Software, USA) running under MS Windows NT.
-
-
-
-
36
-
-
0041377445
-
-
Gaussian, Inc.; Pittsburgh, PA
-
All structures were fully optimized (B3LYP/6-31 G(d)) starting from AM1 stationary points. The nature of the stationary point was verified in every case by a frequency calculation (number of imaginary frequencies = 0 for minima and 1 for TS). The zero point vibrational and thermodynamic corrections were taken from the thermochemistry calculation at 298.15 K and 1 atm (Gaussian 98, revision A.7. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian, Inc.; Pittsburgh, PA, 1998.)
-
(1998)
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Zakrzewski, V.G.7
Montgomery J.A., Jr.8
Stratmann, R.E.9
Burant, J.C.10
Dapprich, S.11
Millam, J.M.12
Daniels, A.D.13
Kudin, K.N.14
Strain, M.C.15
Farkas, O.16
Tomasi, J.17
Barone, V.18
Cossi, M.19
Cammi, R.20
Mennucci, B.21
Pomelli, C.22
Adamo, C.23
Clifford, S.24
Ochterski, J.25
Petersson, G.A.26
Ayala, P.Y.27
Cui, Q.28
Morokuma, K.29
Malick, D.K.30
Rabuck, A.D.31
Raghavachari, K.32
Foresman, J.B.33
Cioslowski, J.34
Ortiz, J.V.35
Stefanov, B.B.36
Liu, G.37
Liashenko, A.38
Piskorz, P.39
Komaromi, I.40
Gomperts, R.41
Martin, R.L.42
Fox, D.J.43
Keith, T.44
Al-Laham, M.A.45
Peng, C.Y.46
Nanayakkara, A.47
Gonzalez, C.48
Challacombe, M.49
Gill, P.M.W.50
Johnson, B.G.51
Chen, W.52
Wong, M.W.53
Andres, J.L.54
Head-Gordon, M.55
Replogle, E.S.56
Pople, J.A.57
more..
-
37
-
-
0042380340
-
-
note
-
In an alternative transition structure, the E double bond is rotated in the opposite direction, putting the C8 - H in the endocyclic position. This process requires a higher activation barrier.
-
-
-
-
38
-
-
0027429535
-
-
Review: Schlosser, M.; Desponds, O.; Lehmann, R.; Moret, E.; Rauchschwalbe, G. Tetrahedron 1993, 49, 10175-10203.
-
(1993)
Tetrahedron
, vol.49
, pp. 10175-10203
-
-
Schlosser, M.1
Desponds, O.2
Lehmann, R.3
Moret, E.4
Rauchschwalbe, G.5
|