-
2
-
-
85035229939
-
-
A. N. Kolmogorov, C. R. Acad. SCI USSR 30, 299 (1941)
-
A. N. Kolmogorov, C. R. Acad. SCI USSR 30, 299 (1941).
-
-
-
-
6
-
-
0000810172
-
-
PRLTAO
-
S. Grossmann, D. Lohse, V. L’vov, and I. Procaccia, Phys. Rev. Lett. 73, 432 (1994).PRLTAO
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 432
-
-
Grossmann, S.1
Lohse, D.2
L’vov, V.3
Procaccia, I.4
-
7
-
-
0344357948
-
-
PLEEE8
-
V. Yakhot, Phys. Rev. E 49, 2887 (1994).PLEEE8
-
(1994)
Phys. Rev. E
, vol.49
, pp. 2887
-
-
Yakhot, V.1
-
12
-
-
0021205138
-
-
JFLSA7
-
F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. Antonia, J. Fluid Mech. 140, 63 (1984).JFLSA7
-
(1984)
J. Fluid Mech.
, vol.140
, pp. 63
-
-
Anselmet, F.1
Gagne, Y.2
Hopfinger, E.J.3
Antonia, R.4
-
14
-
-
84933601990
-
-
JFLSA7
-
S. J. Kline, W. C. Reynolds, F. A. Schraub, and P. W. Runstadler, J. Fluid Mech. 30, 741 (1967).JFLSA7
-
(1967)
J. Fluid Mech.
, vol.30
, pp. 741
-
-
Kline, S.J.1
Reynolds, W.C.2
Schraub, F.A.3
Runstadler, P.W.4
-
17
-
-
0024698819
-
-
JFLSA7
-
B. Castaing, G. Gunaratne, F. Helsot, L. P. Kadanoff, A. Libchaber, S. Thomae, X.-Z. Wu, S. Zaleski, and G. Zanetti, J. Fluid Mech. 204, 1 (1989).JFLSA7
-
(1989)
J. Fluid Mech.
, vol.204
, pp. 1
-
-
Castaing, B.1
Gunaratne, G.2
Helsot, F.3
Kadanoff, L.P.4
Libchaber, A.5
Thomae, S.6
Wu, X.-Z.7
Zaleski, S.8
Zanetti, G.9
-
20
-
-
0000258818
-
-
PHFLE6
-
L. P. Kadanoff, D. Lohse, J. Wang, and R. Benzi, Phys. Fluids 7, 617 (1995).PHFLE6
-
(1995)
Phys. Fluids
, vol.7
, pp. 617
-
-
Kadanoff, L.P.1
Lohse, D.2
Wang, J.3
Benzi, R.4
-
24
-
-
85035230285
-
-
S. Orszag, in Fluid Dynamics, edited by R. Balian and J.-L. Peube (Gordon and Breach, New York, 1977), pp. 235–374
-
S. Orszag, in Fluid Dynamics, edited by R. Balian and J.-L. Peube (Gordon and Breach, New York, 1977), pp. 235–374.
-
-
-
-
25
-
-
85035196322
-
-
The separation [formula presented] is taken implicitly in a fixed horizontal direction, in order to allow simultaneous treatment of the two limits [formula presented], [formula presented]. The one-dimensional spectrum [formula presented], for [formula presented] along [formula presented], is then also the energy spectrum of the signal from a probe in the fluid, at distance [formula presented] from the wall
-
The separation l is taken implicitly in a fixed horizontal direction, in order to allow simultaneous treatment of the two limits l≫x3 and l≪x3. The one-dimensional spectrum Ek(x3), for l along x1, is then also the energy spectrum of the signal from a probe in the fluid, at distance x3 from the wall.
-
-
-
-
30
-
-
0003799489
-
-
Cambridge University Press, Cambridge
-
T. Bohr, M. H. Jensen, G. Paladin, and A. Vulpiani, Dynamical Systems Approach in Turbulence (Cambridge University Press, Cambridge, 1997).
-
(1997)
Dynamical Systems Approach in Turbulence
-
-
Bohr, T.1
Jensen, M.H.2
Paladin, G.3
Vulpiani, A.4
-
31
-
-
84964522837
-
-
QJRMAM
-
J. C. Kaimal, J. C. Wyngaard, Y. Izumi, and O. R. Coté, Q. J. R. Meteorol. Soc. 98, 563 (1972).QJRMAM
-
(1972)
Q. J. R. Meteorol. Soc.
, vol.98
, pp. 563
-
-
Kaimal, J.C.1
Wyngaard, J.C.2
Izumi, Y.3
Coté, O.R.4
-
34
-
-
85035213260
-
-
Control over the ratio of helicity to energy injection in the simplest GOY model is achieved by forcing on two contiguous wave numbers [formula presented], [formula presented], with [formula presented], [formula presented]. The choice [formula presented] corresponds to no helicity input; [formula presented] to no energy input
-
Control over the ratio of helicity to energy injection in the simplest GOY model is achieved by forcing on two contiguous wave numbers n and n+1, with fn=(aEn+1un)/(En+En+1) and fn+1=(bEnun+1)/(En+En+1). The choice b=a/2 corresponds to no helicity input; b=-a to no energy input.
-
-
-
-
37
-
-
85035225061
-
-
(unpublished)
-
E. Levich (unpublished).
-
-
-
Levich, E.1
|