-
2
-
-
0001642392
-
-
A. Bunde, H. E. Roman, S. Russ, A. Aharony, and A. B. Harris, Phys. Rev. Lett. 69, 3189 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.69
, pp. 3189
-
-
Bunde, A.1
Roman, H.E.2
Russ, S.3
Aharony, A.4
Harris, A.B.5
-
7
-
-
0001080748
-
-
A. Kapitulnik, A. Aharony, G. Deutscher, and D. Stauffer, J. Phys. A 16, L269 (1984).
-
(1984)
J. Phys. A
, vol.16
-
-
Kapitulnik, A.1
Aharony, A.2
Deutscher, G.3
Stauffer, D.4
-
8
-
-
0010851862
-
-
J.-P. Hovi, A. Aharony, D. Stauffer, and B. B. Mandelbrot, Phys. Rev. Lett. 77, 877 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 877
-
-
Hovi, J.-P.1
Aharony, A.2
Stauffer, D.3
Mandelbrot, B.B.4
-
10
-
-
0002458123
-
-
S. Havlin, B. L. Trus, G. H. Weiss, and D. Ben-Avraham, J. Phys. A 18, L247 (1985).
-
(1985)
J. Phys. A
, vol.18
-
-
Havlin, S.1
Trus, B.L.2
Weiss, G.H.3
Ben-Avraham, D.4
-
16
-
-
0006468892
-
-
A. Aharony, E. I. Hinrichsen, A. Hansen, J. Feder, T. Jøssang, and H. H. Hardy, Physica A 177, 260 (1991).
-
(1991)
Physica A
, vol.177
, pp. 260
-
-
Aharony, A.1
Hinrichsen, E.I.2
Hansen, A.3
Feder, J.4
Jøssang, T.5
Hardy, H.H.6
-
27
-
-
0004010598
-
-
Springer, Berlin
-
T. E. Harris, The Theory of Branching Processes (Springer, Berlin, 1963); K. B. Athreya and P. E. Ney, Branching Processes (Springer, Berlin, 1972).
-
(1963)
The Theory of Branching Processes
-
-
Harris, T.E.1
-
28
-
-
0004217744
-
-
Springer, Berlin
-
T. E. Harris, The Theory of Branching Processes (Springer, Berlin, 1963); K. B. Athreya and P. E. Ney, Branching Processes (Springer, Berlin, 1972).
-
(1972)
Branching Processes
-
-
Athreya, K.B.1
Ney, P.E.2
-
35
-
-
5244286734
-
-
The periodic functions of Theorems 1 and 2 are completely determined by f [29]. Thus, their determination in the small cell RG calculations does not involve any fitting of the data
-
The periodic functions of Theorems 1 and 2 are completely determined by f [29]. Thus, their determination in the small cell RG calculations does not involve any fitting of the data.
-
-
-
-
36
-
-
5244322721
-
-
private communication
-
The correction terms to the exponential decay, form an active mathematical problem in it's own right. [J. D. Biggins and N. H. Bingham (private communication).]
-
-
-
Biggins, J.D.1
Bingham, N.H.2
-
38
-
-
85088542847
-
-
private communication
-
(1/dmin). Assuming that the leading exponential terms are the same as for fixed Euclidean distance, the data shown in Fig. 7 are calculated by changing variables.
-
-
-
Roman, H.E.1
|