-
1
-
-
0000228172
-
-
ADCPAA
-
For a review, see S.-I Chu, Adv. Chem. Phys. 73, 739 (1989).ADCPAA
-
(1989)
Adv. Chem. Phys.
, vol.73
, pp. 739
-
-
Chu, S.-I.1
-
2
-
-
0002318045
-
-
ZDACE2
-
There are many such papers, including those found as references in 1 above. A particularly relevant example, demonstrating the effect of choice of size and nature of the finite set of basis states, is H. P. Breuer and M. Holthaus, Z. Phys. D 11, 1 (1989).ZDACE2
-
(1989)
Z. Phys. D
, vol.11
, pp. 1
-
-
Breuer, H.P.1
Holthaus, M.2
-
4
-
-
85037190036
-
-
49, 325 (1989).
-
(1989)
, vol.49
, pp. 325
-
-
-
6
-
-
85037183909
-
-
See, e.g., H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory (Princeton University Press, Princeton, 1981), p. 69.
-
See, e.g., H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory (Princeton University Press, Princeton, 1981), p. 69.
-
-
-
-
7
-
-
0000541215
-
-
PLRAAN
-
H. Sambé, Phys. Rev. A 7, 2203 (1973).PLRAAN
-
(1973)
Phys. Rev. A
, vol.7
, pp. 2203
-
-
Sambé, H.1
-
8
-
-
36149021109
-
-
PHRVAO
-
A similarly useful analysis of energy as a function of complex quasimomentum, for electrons in crystalline solids, was made many years ago by one of us: W. Kohn, Phys. Rev. 115, 809 (1959).PHRVAO
-
(1959)
Phys. Rev.
, vol.115
, pp. 809
-
-
Kohn, W.1
-
10
-
-
59049093019
-
-
Addison-Wesley, Reading, MA
-
See, e.g., L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Addison-Wesley, Reading, MA, 1958), Sec. 87.
-
(1958)
Quantum Mechanics: Non-Relativistic Theory
-
-
Landau, L.D.1
Lifshitz, E.M.2
-
11
-
-
21844484345
-
-
JPHAC5
-
The fundamental difference between periodically driven systems with increasing and those with decreasing spacings between successive energy levels has been emphasized by N. Brenner and S. Fishman, J. Phys. A 28, 5973 (1995); JPHAC5
-
(1995)
J. Phys. A
, vol.28
, pp. 5973
-
-
Brenner, N.1
Fishman, S.2
-
12
-
-
85037234624
-
-
29, 7199 (1996).
-
(1996)
, vol.29
, pp. 7199
-
-
-
13
-
-
0004207439
-
-
Van Nostrand, Princeton
-
See, e.g., P. R. Halmos, Measure Theory (Van Nostrand, Princeton, 1950), Sec. 47.
-
(1950)
Measure Theory
-
-
Halmos, P.R.1
-
14
-
-
0000304653
-
-
CMPHAY
-
This nonconvergence implies 13 that the corresponding quasienergy spectrum is not a point spectrum for these values of λ. But Howland has shown 3 that the spectrum is also not absolutely continuous. It follows that the quasienergy spectrum is singular continuous for a set of λ that is everywhere dense but of total measure zero. See also the conclusion of G. Casati and I. Guarneri, Commun. Math. Phys. 95, 121 (1984), that the quantum kicked rotor has singular continuous quasienergy spectra for a nonempty set of driving frequencies.CMPHAY
-
(1984)
Commun. Math. Phys.
, vol.95
, pp. 121
-
-
Casati, G.1
Guarneri, I.2
|