-
9
-
-
85038303610
-
-
It is an intriguing fact that there also exists a prominent mathematical system, namely, the zeros of an ensemble of L functions including the Riemann zeta function, which exhibits the energy eigenvalue statistics of universality class C; see N.M. Katz and P. Sarnak, Random Matrices, Frobenius Eigenvalues and Monodromy, Colloquium Series vol. 45 (American Mathematical Society, Providence, Rhode Island, 1999)
-
It is an intriguing fact that there also exists a prominent mathematical system, namely, the zeros of an ensemble of L functions including the Riemann zeta function, which exhibits the energy eigenvalue statistics of universality class C; see N.M. Katz and P. Sarnak, Random Matrices, Frobenius Eigenvalues and Monodromy, Colloquium Series vol. 45 (American Mathematical Society, Providence, Rhode Island, 1999).
-
-
-
-
11
-
-
0000409433
-
-
K.M. Frahm, P.W. Brouwer, J.A. Melsen, and C.W.J. Beenakker, Phys. Rev. Lett. 76, 2981 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 2981
-
-
Frahm, K.M.1
Brouwer, P.W.2
Melsen, J.A.3
Beenakker, C.W.J.4
-
12
-
-
0032501014
-
-
R. Bundschuh, C. Cassanello, D. Serban, and M.R. Zirnbauer, Nucl. Phys. B532, 689 (1998).
-
(1998)
Nucl. Phys. B
, vol.532
, pp. 689
-
-
Bundschuh, R.1
Cassanello, C.2
Serban, D.3
Zirnbauer, M.R.4
-
13
-
-
0032561609
-
-
T. Senthil, M.P.A. Fisher, L. Balents, and C. Nayak, Phys. Rev. Lett.81, 4704 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 4704
-
-
Senthil, T.1
Fisher, M.P.A.2
Balents, L.3
Nayak, C.4
-
15
-
-
0001914433
-
-
A. Altland, B.D. Simons, and J.P.D. Taras-Semchuk, Pis’ma Zh. Éksp. Teor. Fiz. 67, 22 (1998) [JETP Lett. 67, 22 (1998)]
-
(1998)
JETP Lett.
, vol.67
, pp. 22
-
-
Altland, A.1
Simons, B.D.2
Taras-Semchuk, J.P.D.3
-
18
-
-
85038339175
-
-
This is a standard computation in the Riemannian geometry of symmetric (super)spaces; see, for example, S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces (Academic Press, New York, 1978)
-
This is a standard computation in the Riemannian geometry of symmetric (super)spaces; see, for example, S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces (Academic Press, New York, 1978).
-
-
-
-
19
-
-
12044251389
-
-
G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, and V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).
-
(1994)
Rev. Mod. Phys.
, vol.66
, pp. 1125
-
-
Blatter, G.1
Feigel’man, M.V.2
Geshkenbein, V.B.3
Larkin, A.I.4
Vinokur, V.M.5
-
20
-
-
0040789651
-
-
This symmetry, which is vital for the weak-localization correction of class C, is missing from the random-matrix model proposed by S.R. Bahcall, Phys. Rev. Lett. 77, 5276 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.77
, pp. 5276
-
-
Bahcall, S.R.1
-
22
-
-
85038284851
-
-
The group (Formula presented) is a noncompact version of the orthogonal group (Formula presented)
-
The group (Formula presented) is a noncompact version of the orthogonal group (Formula presented)
-
-
-
-
24
-
-
0012266148
-
-
M.J. Graf, S.-K. Yip, J.A. Sauls, and D. Rainer, Phys. Rev. B 53, 15 147 (1996).
-
(1996)
Phys. Rev. B
, vol.53
, pp. 15
-
-
Graf, M.J.1
Sauls, J.A.2
Rainer, D.3
-
28
-
-
0031552593
-
-
K. Krishana, N.P. Ong, Q. Li, G.D. Gu, and N. Koshizuka, Science 277, 83 (1997).
-
(1997)
Science
, vol.277
, pp. 83
-
-
Krishana, K.1
Ong, N.P.2
Li, Q.3
Gu, G.D.4
Koshizuka, N.5
-
31
-
-
0000225665
-
-
G.E. Volovik, Pis’ma Zh. Éksp. Teor. Fiz. 58, 457 (1998) [JETP Lett. 58, 469 (1993)].
-
(1993)
JETP Lett.
, vol.58
, pp. 469
-
-
Volovik, G.E.1
-
33
-
-
85038283328
-
-
M. Franz, cond-mat/9808230 (unpublished).
-
-
-
Franz, M.1
|