-
7
-
-
0000256814
-
-
P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature 360, 324 (1992); For recent related work, see also P. H. Poole, F. Sciortino, T. Grande, H. E. Stanley, and C. A. Angell, Phys. Rev. Lett. 73, 1632 (1994); H. Tanaka, Nature 380, 328 (1996).
-
(1992)
Nature
, vol.360
, pp. 324
-
-
Poole, P.H.1
Sciortino, F.2
Essmann, U.3
Stanley, H.E.4
-
8
-
-
0000965995
-
-
P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature 360, 324 (1992); For recent related work, see also P. H. Poole, F. Sciortino, T. Grande, H. E. Stanley, and C. A. Angell, Phys. Rev. Lett. 73, 1632 (1994); H. Tanaka, Nature 380, 328 (1996).
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 1632
-
-
Poole, P.H.1
Sciortino, F.2
Grande, T.3
Stanley, H.E.4
Angell, C.A.5
-
9
-
-
0000835084
-
-
P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature 360, 324 (1992); For recent related work, see also P. H. Poole, F. Sciortino, T. Grande, H. E. Stanley, and C. A. Angell, Phys. Rev. Lett. 73, 1632 (1994); H. Tanaka, Nature 380, 328 (1996).
-
(1996)
Nature
, vol.380
, pp. 328
-
-
Tanaka, H.1
-
10
-
-
33645826293
-
-
P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Phys. Rev. E 48, 3799 (1993).
-
(1993)
Phys. Rev. E
, vol.48
, pp. 3799
-
-
Poole, P.H.1
Sciortino, F.2
Essmann, U.3
Stanley, H.E.4
-
11
-
-
5844310896
-
-
note
-
In this paper, we refer to this behavior whereby the slope of the TMD changes sign as the retracing TMD behavior, and we call the thermodynamic scenarios consistent with this behavior retracing TMD scenarios.
-
-
-
-
12
-
-
18844363491
-
-
P. H. Poole, U. Essmann, F. Sciortino, and H. E. Stanley, Phys. Rev. E 48, 4605 (1993).
-
(1993)
Phys. Rev. E
, vol.48
, pp. 4605
-
-
Poole, P.H.1
Essmann, U.2
Sciortino, F.3
Stanley, H.E.4
-
16
-
-
36549094663
-
-
M. A. Floriano, Y. P. Handa, D. D. Klug, and E. Whalley, J. Chem. Phys. 91, 7187 (1993).
-
(1993)
J. Chem. Phys.
, vol.91
, pp. 7187
-
-
Floriano, M.A.1
Handa, Y.P.2
Klug, D.D.3
Whalley, E.4
-
18
-
-
85088810218
-
-
C
-
C.
-
-
-
-
19
-
-
85088810005
-
-
note
-
T is an increasing function of temperature.
-
-
-
-
20
-
-
0342635449
-
-
D. H. Rasmussen, A. P. Mackenzie, C. A. Angell, and J. C. Tucker, Science 181, 342 (1973); C. A. Angell, J. Shuppert, and J. C. Tucker, J. Phys. Chem. 77, 3092 (1973).
-
(1973)
Science
, vol.181
, pp. 342
-
-
Rasmussen, D.H.1
Mackenzie, A.P.2
Angell, C.A.3
Tucker, J.C.4
-
21
-
-
33947087638
-
-
D. H. Rasmussen, A. P. Mackenzie, C. A. Angell, and J. C. Tucker, Science 181, 342 (1973); C. A. Angell, J. Shuppert, and J. C. Tucker, J. Phys. Chem. 77, 3092 (1973).
-
(1973)
J. Phys. Chem.
, vol.77
, pp. 3092
-
-
Angell, C.A.1
Shuppert, J.2
Tucker, J.C.3
-
22
-
-
5844250781
-
-
note
-
The model does not prove that there are no low temperature singularities in water; only experiments can do that. Because such experiments must probe the behavior of a highly supercooled liquid, they are especially difficult. Given this situation, theoretical calculations are useful in two ways. First, they provide thermodynamically consistent scenarios with stringent constraints on the allowed behavior of observable quantities (e.g., a negatively-sloped TMD implies that the compressibility must increase upon cooling). Second, they suggest what must be measured in order to test the theoretical predictions. For example, volumetric and calorimetric measurements of glassy water at different pressures will yield information on the continuity of states between supercooled and glassy water, and hence on the presence, or absence, of the proposed spinodal, critical point, etc.
-
-
-
-
24
-
-
0000883102
-
-
M. Sasai, J. Chem. Phys. 93, 7329 (1990); Bull. Chem. Soc. Jpn. 97, 6292 (1993).
-
(1990)
J. Chem. Phys.
, vol.93
, pp. 7329
-
-
Sasai, M.1
-
25
-
-
0000883102
-
-
M. Sasai, J. Chem. Phys. 93, 7329 (1990); Bull. Chem. Soc. Jpn. 97, 6292 (1993).
-
(1993)
Bull. Chem. Soc. Jpn.
, vol.97
, pp. 6292
-
-
-
27
-
-
5844246453
-
-
note
-
The absence of a second critical point, however, is not just an artifact of the mean field calculation, but a feature of the model.
-
-
-
-
28
-
-
5844299781
-
-
note
-
This value corresponds to the percolation threshold of four bonded molecules on an ice lattice [30], which plays a special role in the percolation model of Stanley and Teixeira [29].
-
-
-
-
29
-
-
0000897816
-
-
Y. Xie, K. F. Ludwig, Jr., G. Morales, D. E. Hare, and C. M. Sorensen, Phys. Rev. Lett. 71, 2050 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 2050
-
-
Xie, Y.1
Ludwig Jr., K.F.2
Morales, G.3
Hare, D.E.4
Sorensen, C.M.5
-
34
-
-
36549096025
-
-
R. L. Blumberg, H. E. Stanley, A. Geiger, and P. Mausbach, J. Chem. Phys. 80, 5230 (1984).
-
(1984)
J. Chem. Phys.
, vol.80
, pp. 5230
-
-
Blumberg, R.L.1
Stanley, H.E.2
Geiger, A.3
Mausbach, P.4
-
35
-
-
5844223923
-
-
note
-
An example would be volumetric and calorimetric measurements of glassy water at different pressures; these yield data on the continuity of states between supercooled and glassy water that validate or falsify the scenario described by this model.
-
-
-
|