메뉴 건너뛰기




Volumn 2, Issue 13, 2000, Pages 1891-1894

Asymmetric Mannich-type reactions of aldimines with a chiral acetate

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0001080997     PISSN: 15237060     EISSN: None     Source Type: Journal    
DOI: 10.1021/ol000099e     Document Type: Article
Times cited : (49)

References (38)
  • 1
    • 0042969710 scopus 로고
    • Morrison, J. D., Ed.; Academic Press: San diego, CA, Chapter 1
    • (a) Evans, D. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: San diego, CA, 1984; Vol. 3, Chapter 1.
    • (1984) Asymmetric Synthesis , vol.3
    • Evans, D.1
  • 2
    • 0004286459 scopus 로고    scopus 로고
    • Oxford University Press: Oxford, Chapter 5
    • (b) Asymmetric Synthesis; Procter, G., Ed.; Oxford University Press: Oxford, 1996; Chapter 5.
    • (1996) Asymmetric Synthesis
    • Procter, G.1
  • 6
    • 0001271879 scopus 로고    scopus 로고
    • Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.; Thieme: Stuttgart
    • Risch, N.; Arend, M. In Stereoselective Synthesis (Houben-Weyl), Vol. E21/b; Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.; Thieme: Stuttgart, 1996; p 1833.
    • (1996) Stereoselective Synthesis (Houben-Weyl) , vol.E21-B , pp. 1833
    • Risch, N.1    Arend, M.2
  • 7
    • 33845183324 scopus 로고
    • (a) Most examples concerning the asymmetric Mannich-type reaction employ chiral sources appended to the N atom of aldimines. For leading reviews, see: (a) Hart, D. J.; Ha, D.-C. Chem. Rev. 1989, 89, 1447.
    • (1989) Chem. Rev. , vol.89 , pp. 1447
    • Hart, D.J.1    Ha, D.-C.2
  • 17
    • 0022447834 scopus 로고
    • For asymmetric Mannich-type reactions using a chiral acetate equivalent (chiral iron acyl complex), see: (a) Liebeskind, L. S.; Welker, M. E.; Fengel, R. W. J. Am. Chem. Soc. 1986, 108, 6328.
    • (1986) J. Am. Chem. Soc. , vol.108 , pp. 6328
    • Liebeskind, L.S.1    Welker, M.E.2    Fengel, R.W.3
  • 20
    • 0030860076 scopus 로고    scopus 로고
    • For preliminary synthesis of 1, see: (a) Saito, S.; Kano, T.; Hatanaka, K.; Yamamoto, H. J. Org. Chem. 1997, 62, 5651. For the more efficient synthesis of 1 we developed recently, see:
    • (1997) J. Org. Chem. , vol.62 , pp. 5651
    • Saito, S.1    Kano, T.2    Hatanaka, K.3    Yamamoto, H.4
  • 24
    • 0021170945 scopus 로고
    • (b) Ha, D.-C; Hart, D. J.; Yang, T.-K. J. Am. Chem. Soc. 1984, 106, 4819. The trimethylsilyl ketene acetal of methyl acetate also shows poor reactivity, see:
    • (1984) J. Am. Chem. Soc. , vol.106 , pp. 4819
    • Ha, D.-C.1    Hart, D.J.2    Yang, T.-K.3
  • 27
    • 0033605814 scopus 로고    scopus 로고
    • In the meantime, restraining effects of the o-methoxyphenyl substituent of aldimines on the formation of β-amino esters, not the β-lactams, was reported in the Refomatsky reaction using α-bromoacetate and Zn, see: Adrian, J. C. Jr.; Barkin, J. L.; Hassib, L. Tetrahedron Lett. 1999, 40, 2457. Moreover, Kobayashi et al. reported a marked influence of aldimines 9 and 17 on the enantioselectivity and reactivity in the Mannich-type reaction using chiral zirconium reagents (ref 3i). Although both aldimines are employable, the reaction mechanism remains totally unclear.
    • (1999) Tetrahedron Lett. , vol.40 , pp. 2457
    • Adrian J.C., Jr.1    Barkin, J.L.2    Hassib, L.3
  • 29
    • 85037502355 scopus 로고    scopus 로고
    • note
    • For example, the reaction of the aldimine derived from 3-trimethylsilyl-2-propynal with a ketene silyl acetal exhibits reversal in the absolute configuration, compared with that of the aldimine derived from benzaldehyde using a chiral boron reagent. This implies that the (Z)-structure is the reactive form for the former aldimine, whereas it is (E)-isomer for the latter, see ref 3j. In good contrast, the present reaction using the o-anisidine-derived aldimines derived from these two types of aldehydes showed an identical S configuration.
  • 30
    • 85037507671 scopus 로고    scopus 로고
    • See Supporting Information for experimental details
    • See Supporting Information for experimental details.
  • 35
    • 0017318125 scopus 로고
    • Although it has been reported that aminoester 20 was readily oxidized by CAN to give 22 (ref 8), we were unable to detect the formation of 22 using CAN by varying numerous reaction conditions. No attempt was made here to characterize the exact structure of the dimer. Competitive dimerization is a significant problem in certain cases using CAN, see: Jacob, P., III; Callery, P. S.; Shulgin, A. T.; Castagnoli, N., Jr. J. Org. Chem. 1976, 41, 3627. We also tried oxidative removal of the o-fluorophenyl group from methyl 3-(2-fluorophenyl)amino-3-phenylpropionate (entry 7, Table 1) under conditions similar to those employed for 20 and 21 using CAN. However, product 22 was formed in 14% yield.
    • (1976) J. Org. Chem. , vol.41 , pp. 3627
    • Jacob P. III1    Callery, P.S.2    Shulgin, A.T.3    Castagnoli N., Jr.4
  • 36
    • 0000928577 scopus 로고
    • It was proposed that the boron enolates of α-unsubstituted ketones favor the more stable U-form by 1-2 kcal/mol than the W-form. Similarly, it is conceivable that the bulky phenoxy group of the enolate of 2 renders the U-form most likely and gives a twist-boat transition structure: (a) Gennari, C.; Todeschini, R.; Beretta, M. G.; Favini, G.; Scolastico, C. J. Org. Chem. 1986, 51, 612.
    • (1986) Org. Chem. , vol.51 , pp. 612
    • Gennari, C.1    Todeschini, R.2    Beretta, M.G.3    Favini, G.4    Scolastico, C.J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.