-
1
-
-
0001767935
-
-
M. Sutton, S. E. Nagler, S. G. Mochrie, T. Greytak, L. E. Bermann, G. Held, and G. B. Stephenson, Nature (London) 352, 608 (1991).NATUAS
-
(1991)
Nature (London)
, vol.352
, pp. 608
-
-
Sutton, M.1
Nagler, S.E.2
Mochrie, S.G.3
Greytak, T.4
Bermann, L.E.5
Held, G.6
Stephenson, G.B.7
-
2
-
-
0003480237
-
-
Aca- demic, London
-
A comprehensive review is given by J. D. Gunton, M. San Miguel and P. S. Sahni, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz (Aca- demic, London, 1983), Vol. 8. Ideas of scaling in domain growth follow similar ideas in critical dynamics
-
(1983)
Phase Transitions and Critical Phenomena
-
-
Gunton, J.D.1
San Miguel, M.2
Sahni, P.S.3
-
5
-
-
3343006084
-
-
S. E. Nagler, R. F. Shannon, Jr., C. R. Harkless, and M. A. Singh, Phys. Rev. Lett. 61, 718 (1988); PRLTAO
-
(1988)
Phys. Rev. Lett.
, vol.61
, pp. 718
-
-
Nagler, S.E.1
Shannon, R.F.2
Harkless, C.R.3
Singh, M.A.4
-
6
-
-
0002293240
-
-
R. F. Shannon, Jr., S. E. Nagler, C. R. Harkless, and R. M. Nicklow, Phys. Rev. B 46, 40 (1992).PRBMDO
-
(1992)
Phys. Rev. B
, vol.46
, pp. 40
-
-
Shannon, R.F.1
Nagler, S.E.2
Harkless, C.R.3
Nicklow, R.M.4
-
10
-
-
0001475683
-
-
S. B. Dierker, R. Pindak, R. M. Fleming, I. K. Robinson, and L. Berman, Phys. Rev. Lett. 75, 449 (1995).PRLTAO
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 449
-
-
Dierker, S.B.1
Pindak, R.2
Fleming, R.M.3
Robinson, I.K.4
Berman, L.5
-
11
-
-
0029305653
-
-
B. Chu, Q.-C. Ying, F.-J. Yeh, A. Patkowski, W. Steffen, and E. W. Fischer, Langmuir 11, 1419 (1995).LANGD5
-
(1995)
Langmuir
, vol.11
, pp. 1419
-
-
Chu, B.1
Patkowski, A.2
Steffen, W.3
Fischer, E.W.4
-
12
-
-
11944249424
-
-
S. Brauer, G. B. Stephenson, M. Sutton, R. Brüning, E. Dufresne, S. G. J. Mochrie, G. Grübel, J. Als-Nielsen, and D. L. Abernathy, Phys. Rev. Lett. 74, 2010 (1995).PRLTAO
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 2010
-
-
Brauer, S.1
Stephenson, G.B.2
Sutton, M.3
Brüning, R.4
Dufresne, E.5
Mochrie, S.G.J.6
Grübel, G.7
Als-Nielsen, J.8
Abernathy, D.L.9
-
13
-
-
0031076863
-
-
S. G. J. Mochrie, A. M. Mayes, A. R. Sandy, M. Sutton, S. Brauer, G. B. Stephenson, D. L. Abernathy, and G. Grübel, Phys. Rev. Lett. 78, 1275 (1997).PRLTAO
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 1275
-
-
Mochrie, S.G.J.1
Mayes, A.M.2
Sandy, A.R.3
Sutton, M.4
Brauer, S.5
Stephenson, G.B.6
Abernathy, D.L.7
Grübel, G.8
-
15
-
-
85037191264
-
-
E. Dufresne, Ph. D. thesis, McGill University, 1995;E. Dufresne, M. Sutton, K. Elder, B. Morin, M. Grant, B. Rodricks, G. B. Stephenson, G. B. Held, C. Thompson, S. G. J. Mochrie, S. E. Nagler, L. E. Berman, and R. Headrick (unpublished).
-
-
-
Dufresne, E.1
Sutton, M.2
Elder, K.3
Morin, B.4
Grant, M.5
Rodricks, B.6
Stephenson, G.B.7
Held, G.B.8
Thompson, C.9
Mochrie, S.G.J.10
Nagler, S.E.11
Berman, L.E.12
Headrick, R.13
-
16
-
-
0003586464
-
-
Plenum Press, New York
-
J. Feder, Fractals (Plenum Press, New York, 1988).
-
(1988)
Fractals
-
-
Feder, J.1
-
17
-
-
85037218404
-
-
to the short sample time series shown in Fig. 33. This yields a Hurst exponent of approximately 0.54 for the “Brownian” function (near the expected value of 1/2), and a significantly larger value of approximately 0.74 for the normalized scattering intensity. However, the correlation times of these normalized time series are slowly increasing. Thus the processes are not stationary, and the direct application of (Formula presented)-(Formula presented) analysis is only to be regarded as an approximate way of estimating the degree of persistence
-
to the short sample time series shown in Fig. 33. This yields a Hurst exponent of approximately 0.54 for the “Brownian” function (near the expected value of 1/2), and a significantly larger value of approximately 0.74 for the normalized scattering intensity. However, the correlation times of these normalized time series are slowly increasing. Thus the processes are not stationary, and the direct application of (Formula presented)-(Formula presented) analysis is only to be regarded as an approximate way of estimating the degree of persistence.
-
-
-
-
23
-
-
85037239711
-
-
It is natural to normalize the covariance by the standard deviations. In dynamic light scattering, the autocorrelation function is normalized by the average intensity. For random Gaussian fluctuations, these are equal. See Eq. (4.9)
-
It is natural to normalize the covariance by the standard deviations. In dynamic light scattering, the autocorrelation function is normalized by the average intensity. For random Gaussian fluctuations, these are equal. See Eq. (4.9).
-
-
-
|