-
1
-
-
0023859136
-
-
Yanagisawa, M.; Kurihara, H.; Kimura, S.; Tomobe, Y.; Kobayashi, M.; Mitsui, Y.; Yazaki, Y.; Goto, K.; Masaki, T. Nature 1988, 332, 411.
-
(1988)
Nature
, vol.332
, pp. 411
-
-
Yanagisawa, M.1
Kurihara, H.2
Kimura, S.3
Tomobe, Y.4
Kobayashi, M.5
Mitsui, Y.6
Yazaki, Y.7
Goto, K.8
Masaki, T.9
-
2
-
-
77957106047
-
-
Bristol, J. A., Ed.; Academic: San Diego
-
Lago, M. A.; Luengo, J. I.; Peishoff, C. E.; Elliot, J. D. In. Annual Reports in Medicinal Chemistry; Bristol, J. A., Ed.; Academic: San Diego, 1.996; Vol. 31, p 81.
-
(1996)
Annual Reports in Medicinal Chemistry
, vol.31
, pp. 81
-
-
Lago, M.A.1
Luengo, J.I.2
Peishoff, C.E.3
Elliot, J.D.4
-
4
-
-
0028263518
-
-
Elliot, J. D.; Lago, M. A.; Cousins, R. D.; Gao, A.; Leber, J. D.; Erhard, K. F.; Nambi, P.; Elshourbagy, N. A.; Kumar, C.; Lee, J. A.; Bean, J. W.; DeBrosse, C. W.; Eggleston, D. S.; Brooks, D. P.; Feuerstein, G.; Ruffolo, R. R., Jr.; Weinstock, J.; Gleason, J. G.; Peishoff, C. E.; Ohlstein, E. H. J. Med. Chem. 1994, 37, 1553.
-
(1994)
J. Med. Chem.
, vol.37
, pp. 1553
-
-
Elliot, J.D.1
Lago, M.A.2
Cousins, R.D.3
Gao, A.4
Leber, J.D.5
Erhard, K.F.6
Nambi, P.7
Elshourbagy, N.A.8
Kumar, C.9
Lee, J.A.10
Bean, J.W.11
DeBrosse, C.W.12
Eggleston, D.S.13
Brooks, D.P.14
Feuerstein, G.15
Ruffolo Jr., R.R.16
Weinstock, J.17
Gleason, J.G.18
Peishoff, C.E.19
Ohlstein, E.H.20
more..
-
5
-
-
0001066598
-
-
(a) Itsuno, S.; Ito, K.; Hirao, A.; Nakahama, S. Bull. Chem. Soc. Jpn. 1987, 60, 395.
-
(1987)
Bull. Chem. Soc. Jpn.
, vol.60
, pp. 395
-
-
Itsuno, S.1
Ito, K.2
Hirao, A.3
Nakahama, S.4
-
6
-
-
33845282886
-
-
and references therein.
-
(b) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109, 5551 and references therein.
-
(1987)
J. Am. Chem. Soc.
, vol.109
, pp. 5551
-
-
Corey, E.J.1
Bakshi, R.K.2
Shibata, S.3
-
7
-
-
0026738573
-
-
For related examples, see
-
(a) Motherwell, W. B.; Sandham, D. A. Tetrahedron Lett. 1992, 33, 6187. For related examples, see
-
(1992)
Tetrahedron Lett.
, vol.33
, pp. 6187
-
-
Motherwell, W.B.1
Sandham, D.A.2
-
8
-
-
0025785948
-
-
(b) Edwards, G. L.; Motherwell, W. B.; Powell, D. M.; Sandham, D. A. J. Chem. Soc., Chem. Commun. 1991, 1399.
-
(1991)
J. Chem. Soc., Chem. Commun.
, pp. 1399
-
-
Edwards, G.L.1
Motherwell, W.B.2
Powell, D.M.3
Sandham, D.A.4
-
9
-
-
0000918807
-
-
Anti β-hydrogen addition and/or elimination pathways are relatively uncommon in nickel and palladium chemistry-a pathway which would lower the stereoselectivity of 5 → 6; see: Hartley, S. P. F. R., Ed.; John Wiley: New York
-
Anti β-hydrogen addition and/or elimination pathways are relatively uncommon in nickel and palladium chemistry-a pathway which would lower the stereoselectivity of 5 → 6; see: Cross, R. J. In The Chemistry of the MetalCarbon Bond; Hartley, S. P. F. R., Ed.; John Wiley: New York, 1985; Vol. 2, p 559.
-
(1985)
The Chemistry of the MetalCarbon Bond
, vol.2
, pp. 559
-
-
Cross, R.J.1
-
11
-
-
0000913941
-
-
To the best of our knowledge, this is the first example of a palladiumcatalyzed 5-endo-trig cyclization to form a 2H-indenone. For examples of palladium-catalyzed and transition metal based transformations for the synthesis of indenones, see: (a) and references therein.
-
To the best of our knowledge, this is the first example of a palladiumcatalyzed 5-endo-trig cyclization to form a 2H-indenone. For examples of palladium-catalyzed and transition metal based transformations for the synthesis of indenones, see: (a) Larock, R. C.; Doty, M. J.; Cacchi, S. J. Org. Chem. 1993, 58, 4579 and references therein.
-
(1993)
J. Org. Chem.
, vol.58
, pp. 4579
-
-
Larock, R.C.1
Doty, M.J.2
Cacchi, S.3
-
12
-
-
0030908560
-
-
Chen, C.-Y.; Lieberman, D. R.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. J. Org. Chem. 1997, 62, 2676.
-
(1997)
J. Org. Chem.
, vol.62
, pp. 2676
-
-
Chen, C.-Y.1
Lieberman, D.R.2
Larsen, R.D.3
Verhoeven, T.R.4
Reider, P.J.5
-
13
-
-
78049237882
-
-
A reduction in the optical purity of 5 (94% ee) was not observed with the potassium alkoxide when quenched with glacial AcOH after 50% conversion. Therefore carbanion formation did not contribute to the dramatic loss of stereochemistry observed in this reaction.
-
A reduction in the optical purity of 5 (94% ee) was not observed with the potassium alkoxide when quenched with glacial AcOH after 50% conversion. Therefore carbanion formation did not contribute to the dramatic loss of stereochemistry observed in this reaction.
-
-
-
-
14
-
-
37049100331
-
-
The DABCO-catalyzed rearrangement was equally efficient in the absence of light, ruling out a photochemical, rearrangement. For examples of 1,5-sigmatropic migrations of alkenyl and aryl groups of 2,3-phenylindenol and 2,3,4,5-tetraphenylcyclopentenol, see
-
The DABCO-catalyzed rearrangement was equally efficient in the absence of light, ruling out a photochemical, rearrangement. For examples of 1,5-sigmatropic migrations of alkenyl and aryl groups of 2,3-phenylindenol and 2,3,4,5-tetraphenylcyclopentenol, see: Battye, P. J.; Jones, D. W. J. Chem. Soc., Chem. Commun. 1984, 990.
-
(1984)
J. Chem. Soc., Chem. Commun.
, pp. 990
-
-
Battye, P.J.1
Jones, D.W.2
-
15
-
-
0000915385
-
-
Dramatic rate acceleration of potassium alkoxides on 1,5-hydrogen rearrangements has also been reported
-
Dramatic rate acceleration of potassium alkoxides on 1,5-hydrogen rearrangements has also been reported: Paqnette, L. A.; Crouse, G. D.; Sharma, A. K. J. Am. Chem. Soc. 1980, 102, 3972.
-
(1980)
J. Am. Chem. Soc.
, vol.102
, pp. 3972
-
-
Paqnette, L.A.1
Crouse, G.D.2
Sharma, A.K.3
-
16
-
-
78049292937
-
-
Using a stoichiometric amount of base, piperidine and tributylamine delivered 6 in 92% yield (88.7% ee) and 90% yield (91.7% ee), respectively.
-
Using a stoichiometric amount of base, piperidine and tributylamine delivered 6 in 92% yield (88.7% ee) and 90% yield (91.7% ee), respectively.
-
-
-
-
17
-
-
78049287850
-
-
The percent deuterium incorporation of 8 and 10 was determined by flow injection analysis electrospray ionization mass spectrometry using successive normalization subtraction of the observed ion patterns of the labeled and unlabeled compounds.
-
The percent deuterium incorporation of 8 and 10 was determined by flow injection analysis electrospray ionization mass spectrometry using successive normalization subtraction of the observed ion patterns of the labeled and unlabeled compounds.
-
-
-
|