-
2
-
-
0000685770
-
-
L. Caiani, L. Casetti, C. Clementi, and M. Pettini, Phys. Rev. Lett. 79, 4361 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 4361
-
-
Caiani, L.1
Casetti, L.2
Clementi, C.3
Pettini, M.4
-
3
-
-
0001414662
-
-
L. Caiani, L. Casetti, C. Clementi, G. Pettini, M. Pettini, and R. Gatto, Phys. Rev. E 57, 3886 (1998).
-
(1998)
Phys. Rev. E
, vol.57
, pp. 3886
-
-
Caiani, L.1
Casetti, L.2
Clementi, C.3
Pettini, G.4
Pettini, M.5
Gatto, R.6
-
4
-
-
85036294083
-
-
Here topology is meant in the sense of de Rham’s cohomology
-
Here topology is meant in the sense of de Rham’s cohomology.
-
-
-
-
6
-
-
85036369818
-
-
C. Clementi, Master thesis, SISSA/ISAS, 1996 (unpublished)
-
C. Clementi, Master thesis, SISSA/ISAS, 1996 (unpublished).
-
-
-
-
10
-
-
85035223464
-
-
and references cited therein
-
L. Casetti, C. Clementi, and M. Pettini, Phys. Rev. E 54, 5969 (1996), and references cited therein.
-
(1996)
Phys. Rev. E
, vol.54
, pp. 5969
-
-
Casetti, L.1
Clementi, C.2
Pettini, M.3
-
12
-
-
0004190360
-
-
Princeton University Press, Princeton
-
J. Milnor, Morse Theory (Princeton University Press, Princeton, 1969).
-
(1969)
Morse Theory
-
-
Milnor, J.1
-
15
-
-
85036261792
-
-
This classic co-area formula can be found in H. Federer, Geometric Measure Theory (Springer, Berlin, 1969)
-
This classic co-area formula can be found in H. Federer, Geometric Measure Theory (Springer, Berlin, 1969).
-
-
-
-
18
-
-
85036209879
-
-
It is remarkable that (Formula presented) appears rather insensitive to the system size. This fact does not seem too surprising in light of recent arguments about finite-size scaling effects in statistical mechanics. The claim is that these effects are peculiar to the canonical ensemble and have nothing to do with the physics of the phase transition. See D.H.E. Gross, Phase transitions without thermodynamic limit, e-print cond-mat/9805391
-
-
-
Gross, D.H.E.1
-
19
-
-
0030640269
-
-
and references therein. Now, (Formula presented) is computed through a geometric integral that has nothing to do with canonical ensemble averages, whence a possible explanation of its near independence of the system size
-
D.H.E. GrossPhys. Rep. 279, 119 (1997), and references therein. Now, (Formula presented) is computed through a geometric integral that has nothing to do with canonical ensemble averages, whence a possible explanation of its near independence of the system size.
-
(1997)
Phys. Rep.
, vol.279
, pp. 119
-
-
Gross, D.H.E.1
|