-
1
-
-
21444446606
-
A proof of the arithmetic mean-geometric mean inequlity
-
H. ALZER, A proof of the arithmetic mean-geometric mean inequlity. Amer. Math. Monthly 103 (1996), 585.
-
(1996)
Amer. Math. Monthly
, vol.103
, pp. 585
-
-
Alzer, H.1
-
2
-
-
0003699290
-
-
D. Reidel Publ. Company, Dordrecht/Boston/Lancaster/Tokyo
-
P. S. BULLEN, D. S. MITRINOVIĆ, AND P. M. VASIĆ, Means and Their Inequalities, D. Reidel Publ. Company, Dordrecht/Boston/Lancaster/Tokyo, 1988.
-
(1988)
Means and Their Inequalities
-
-
Bullen, P.S.1
Mitrinović, D.S.2
Vasić, P.M.3
-
3
-
-
0004054936
-
-
Hunan Education Press, Changsha, China, (Chinese)
-
JI-CHANG KUANG, Applied Inequalities, 2nd edition, Hunan Education Press, Changsha, China, 1993. (Chinese)
-
(1993)
Applied Inequalities, 2nd Edition
-
-
Kuang, J.-C.1
-
5
-
-
0001371180
-
Inequalities for integral mean values
-
LÁSZLÓ LOSONCZI, Inequalities for integral mean values, J. Math. Anal. Appl. 61 (1977), 586-606.
-
(1977)
J. Math. Anal. Appl.
, vol.61
, pp. 586-606
-
-
Losonczi, L.1
-
8
-
-
26744432238
-
Nejednakosti
-
Zagreb
-
J. PEČARIĆ, Nejednakosti, Element, Zagreb, 1996.
-
(1996)
Element
-
-
Pečarić, J.1
-
9
-
-
0000268279
-
Refinements and extensions of an inequality
-
J. PEČARIĆ, FENG QI, V ŠIMIĆ, AND SEN-LIN XU, Refinements and extensions of an inequality, III, J. Math. Anal. Appl. 227 (1998), no. 2, 439-448.
-
(1998)
III, J. Math. Anal. Appl.
, vol.227
, Issue.2
, pp. 439-448
-
-
Pečarić, J.1
Feng, Q.I.2
Šimić, V.3
Xu, S.-L.4
-
10
-
-
0031276151
-
A new proof of the arithmetic mean-the geometric mean inequlity
-
J. PEČARIĆ AND S. VAROŠANEC, A new proof of the arithmetic mean-the geometric mean inequlity, J. Math. Anal. Appl. 215 (1997), 577-578.
-
(1997)
J. Math. Anal. Appl.
, vol.215
, pp. 577-578
-
-
Pečarić, J.1
Varošanec, S.2
-
11
-
-
0000407393
-
Generalized weighted mean values with two parameters
-
FENG QI, Generalized weighted mean values with two parameters, Proc. Roy. Soc. London Ser. A 454 (1998), no. 1978, 2723-2732.
-
(1998)
Proc. Roy. Soc. London Ser. A
, vol.454
, Issue.1978
, pp. 2723-2732
-
-
Feng, Q.I.1
-
12
-
-
0005557874
-
On a two-parameter family of nonhomogeneous mean values
-
FENG QI, On a two-parameter family of nonhomogeneous mean values, Tamkang J. Math. 29 (1998), no. 2, 155-163.
-
(1998)
Tamkang J. Math.
, vol.29
, Issue.2
, pp. 155-163
-
-
Feng, Q.I.1
-
13
-
-
10044296224
-
-
Article 4
-
FENG QI, Generalized abstracted mean values, Journal of Inequalities in Pure and Applied Mathematics 1 (2000), no. 1, Article 4. http://jipam.vu.edu.au/v1n1/013.99.html. RGMIA Research Report Collection 2 (1999), no. 5, Article 4. http://rgmia.vu.edu.au/v2n5.html.
-
(2000)
Generalized Abstracted Mean Values, Journal of Inequalities in Pure and Applied Mathematics
, vol.1
, Issue.1
-
-
Feng, Q.I.1
-
14
-
-
10044296224
-
-
Article 4
-
FENG QI, Generalized abstracted mean values, Journal of Inequalities in Pure and Applied Mathematics 1 (2000), no. 1, Article 4. http://jipam.vu.edu.au/v1n1/013.99.html. RGMIA Research Report Collection 2 (1999), no. 5, Article 4. http://rgmia.vu.edu.au/v2n5.html.
-
(1999)
RGMIA Research Report Collection
, vol.2
, Issue.5
-
-
-
15
-
-
0347046099
-
Logarithmic convexities of the extended mean values
-
Article 5
-
FENG QI, Logarithmic convexities of the extended mean values, RGMIA Research Report Collection 2 (1999), no. 5, Article 5. http.//rgmia.vu.edu.au/v2n5.html.
-
(1999)
RGMIA Research Report Collection
, vol.2
, Issue.5
-
-
Feng, Q.I.1
-
16
-
-
0000990016
-
A simple proof of monotonicity for extended mean values
-
FENG QI AND QIU-MING LUO, A simple proof of monotonicity for extended mean values, J. Math. Anal. Appl. 224 (1998), 356-359.
-
(1998)
J. Math. Anal. Appl.
, vol.224
, pp. 356-359
-
-
Feng, Q.I.1
Luo, Q.-M.2
-
17
-
-
0347046098
-
Other proofs of monotonicity for generalized weighted mean values
-
Article 6
-
FENG QI, JIA-QIANG MEI, AND SEN-LIN XU, Other proofs of monotonicity for generalized weighted mean values, RGMIA Research Report Collection 2 (1999), no. 4, Article 6. http://rgmia.vu.edu.au/v2n4.html.
-
(1999)
RGMIA Research Report Collection
, vol.2
, Issue.4
-
-
Feng, Q.I.1
Mei, J.-Q.2
Xu, S.-L.3
-
18
-
-
0000310946
-
A new proof of monotonicity for extended mean values
-
FENG QI, SEN-LIN XU, AND LOKENATH DEBNATH, A new proof of monotonicity for extended mean values, Intern. J. Math. Math. Sci. 22 (1999), no. 2, 415-420.
-
(1999)
Intern. J. Math. Math. Sci.
, vol.22
, Issue.2
, pp. 415-420
-
-
Feng, Q.I.1
Xu, S.-L.2
Debnath, L.3
-
19
-
-
0031176236
-
Refinements and extensions of an inequality
-
FENG QI AND SEN-LIN XU, Refinements and extensions of an inequality, II, J. Math. Anal. Appl. 211 (1997), 616-4520.
-
(1997)
II, J. Math. Anal. Appl.
, vol.211
, pp. 616-4520
-
-
Feng, Q.I.1
Xu, S.-L.2
-
20
-
-
22444453218
-
x)/x: Inequalities and properties
-
x)/x: Inequalities and properties, Proc. Amer. Math. Soc. 126 (1998), no. 11, 3355-3359.
-
(1998)
Proc. Amer. Math. Soc.
, vol.126
, Issue.11
, pp. 3355-3359
-
-
Feng, Q.I.1
Xu, S.-L.2
-
21
-
-
33746437090
-
Note on monotonicity of generalized weighted mean values
-
FENG QI AND SHI-QIN ZHANG, Note on monotonicity of generalized weighted mean values, Proc. Roy. Soc. London Ser. A 455 (1999), no. 1989, 3259-3260.
-
(1999)
Proc. Roy. Soc. London Ser. A
, vol.455
, Issue.1989
, pp. 3259-3260
-
-
Feng, Q.I.1
Zhang, S.-Q.2
-
22
-
-
0347676798
-
A proof of the arithmetic mean-geometric mean-harmonic mean inequalities
-
Article 10, 99-102
-
DA-FENG XIA, SEN-LIN XU, AND FENG QI, A proof of the arithmetic mean-geometric mean-harmonic mean inequalities, RGMIA Research Report Collection 2 (1999), no. 1, Article 10, 99-102. http://rgmia.vu.edu.au/v2n1.html.
-
(1999)
RGMIA Research Report Collection
, vol.2
, Issue.1
-
-
Xia, D.-F.1
Xu, S.-L.2
Feng, Q.I.3
-
23
-
-
0013512978
-
Generalizations of the logarithmic mean
-
REN-ER YANG AND DONG-JI CAO, Generalizations of the logarithmic mean, J. Ningbo Univ. 2 (1989), no. 2, 105-108.
-
(1989)
J. Ningbo Univ.
, vol.2
, Issue.2
, pp. 105-108
-
-
Yang, R.-E.1
Cao, D.-J.2
|