메뉴 건너뛰기




Volumn 3, Issue 3, 2000, Pages 377-383

New proofs of weighted power mean inequalities and monotonicity for generalized weighted mean values

Author keywords

Cauchy Schwarz Buniakowski's inequality; Generalized weighted mean values; Inequality; Monotonicity; Power mean; Weighted mean

Indexed keywords


EID: 0001002556     PISSN: 13314343     EISSN: None     Source Type: Journal    
DOI: 10.7153/mia-03-38     Document Type: Article
Times cited : (20)

References (23)
  • 1
    • 21444446606 scopus 로고    scopus 로고
    • A proof of the arithmetic mean-geometric mean inequlity
    • H. ALZER, A proof of the arithmetic mean-geometric mean inequlity. Amer. Math. Monthly 103 (1996), 585.
    • (1996) Amer. Math. Monthly , vol.103 , pp. 585
    • Alzer, H.1
  • 5
    • 0001371180 scopus 로고
    • Inequalities for integral mean values
    • LÁSZLÓ LOSONCZI, Inequalities for integral mean values, J. Math. Anal. Appl. 61 (1977), 586-606.
    • (1977) J. Math. Anal. Appl. , vol.61 , pp. 586-606
    • Losonczi, L.1
  • 8
    • 26744432238 scopus 로고    scopus 로고
    • Nejednakosti
    • Zagreb
    • J. PEČARIĆ, Nejednakosti, Element, Zagreb, 1996.
    • (1996) Element
    • Pečarić, J.1
  • 10
    • 0031276151 scopus 로고    scopus 로고
    • A new proof of the arithmetic mean-the geometric mean inequlity
    • J. PEČARIĆ AND S. VAROŠANEC, A new proof of the arithmetic mean-the geometric mean inequlity, J. Math. Anal. Appl. 215 (1997), 577-578.
    • (1997) J. Math. Anal. Appl. , vol.215 , pp. 577-578
    • Pečarić, J.1    Varošanec, S.2
  • 11
    • 0000407393 scopus 로고    scopus 로고
    • Generalized weighted mean values with two parameters
    • FENG QI, Generalized weighted mean values with two parameters, Proc. Roy. Soc. London Ser. A 454 (1998), no. 1978, 2723-2732.
    • (1998) Proc. Roy. Soc. London Ser. A , vol.454 , Issue.1978 , pp. 2723-2732
    • Feng, Q.I.1
  • 12
    • 0005557874 scopus 로고    scopus 로고
    • On a two-parameter family of nonhomogeneous mean values
    • FENG QI, On a two-parameter family of nonhomogeneous mean values, Tamkang J. Math. 29 (1998), no. 2, 155-163.
    • (1998) Tamkang J. Math. , vol.29 , Issue.2 , pp. 155-163
    • Feng, Q.I.1
  • 14
    • 10044296224 scopus 로고    scopus 로고
    • Article 4
    • FENG QI, Generalized abstracted mean values, Journal of Inequalities in Pure and Applied Mathematics 1 (2000), no. 1, Article 4. http://jipam.vu.edu.au/v1n1/013.99.html. RGMIA Research Report Collection 2 (1999), no. 5, Article 4. http://rgmia.vu.edu.au/v2n5.html.
    • (1999) RGMIA Research Report Collection , vol.2 , Issue.5
  • 15
    • 0347046099 scopus 로고    scopus 로고
    • Logarithmic convexities of the extended mean values
    • Article 5
    • FENG QI, Logarithmic convexities of the extended mean values, RGMIA Research Report Collection 2 (1999), no. 5, Article 5. http.//rgmia.vu.edu.au/v2n5.html.
    • (1999) RGMIA Research Report Collection , vol.2 , Issue.5
    • Feng, Q.I.1
  • 16
    • 0000990016 scopus 로고    scopus 로고
    • A simple proof of monotonicity for extended mean values
    • FENG QI AND QIU-MING LUO, A simple proof of monotonicity for extended mean values, J. Math. Anal. Appl. 224 (1998), 356-359.
    • (1998) J. Math. Anal. Appl. , vol.224 , pp. 356-359
    • Feng, Q.I.1    Luo, Q.-M.2
  • 17
    • 0347046098 scopus 로고    scopus 로고
    • Other proofs of monotonicity for generalized weighted mean values
    • Article 6
    • FENG QI, JIA-QIANG MEI, AND SEN-LIN XU, Other proofs of monotonicity for generalized weighted mean values, RGMIA Research Report Collection 2 (1999), no. 4, Article 6. http://rgmia.vu.edu.au/v2n4.html.
    • (1999) RGMIA Research Report Collection , vol.2 , Issue.4
    • Feng, Q.I.1    Mei, J.-Q.2    Xu, S.-L.3
  • 18
    • 0000310946 scopus 로고    scopus 로고
    • A new proof of monotonicity for extended mean values
    • FENG QI, SEN-LIN XU, AND LOKENATH DEBNATH, A new proof of monotonicity for extended mean values, Intern. J. Math. Math. Sci. 22 (1999), no. 2, 415-420.
    • (1999) Intern. J. Math. Math. Sci. , vol.22 , Issue.2 , pp. 415-420
    • Feng, Q.I.1    Xu, S.-L.2    Debnath, L.3
  • 19
    • 0031176236 scopus 로고    scopus 로고
    • Refinements and extensions of an inequality
    • FENG QI AND SEN-LIN XU, Refinements and extensions of an inequality, II, J. Math. Anal. Appl. 211 (1997), 616-4520.
    • (1997) II, J. Math. Anal. Appl. , vol.211 , pp. 616-4520
    • Feng, Q.I.1    Xu, S.-L.2
  • 20
    • 22444453218 scopus 로고    scopus 로고
    • x)/x: Inequalities and properties
    • x)/x: Inequalities and properties, Proc. Amer. Math. Soc. 126 (1998), no. 11, 3355-3359.
    • (1998) Proc. Amer. Math. Soc. , vol.126 , Issue.11 , pp. 3355-3359
    • Feng, Q.I.1    Xu, S.-L.2
  • 21
    • 33746437090 scopus 로고    scopus 로고
    • Note on monotonicity of generalized weighted mean values
    • FENG QI AND SHI-QIN ZHANG, Note on monotonicity of generalized weighted mean values, Proc. Roy. Soc. London Ser. A 455 (1999), no. 1989, 3259-3260.
    • (1999) Proc. Roy. Soc. London Ser. A , vol.455 , Issue.1989 , pp. 3259-3260
    • Feng, Q.I.1    Zhang, S.-Q.2
  • 22
    • 0347676798 scopus 로고    scopus 로고
    • A proof of the arithmetic mean-geometric mean-harmonic mean inequalities
    • Article 10, 99-102
    • DA-FENG XIA, SEN-LIN XU, AND FENG QI, A proof of the arithmetic mean-geometric mean-harmonic mean inequalities, RGMIA Research Report Collection 2 (1999), no. 1, Article 10, 99-102. http://rgmia.vu.edu.au/v2n1.html.
    • (1999) RGMIA Research Report Collection , vol.2 , Issue.1
    • Xia, D.-F.1    Xu, S.-L.2    Feng, Q.I.3
  • 23
    • 0013512978 scopus 로고
    • Generalizations of the logarithmic mean
    • REN-ER YANG AND DONG-JI CAO, Generalizations of the logarithmic mean, J. Ningbo Univ. 2 (1989), no. 2, 105-108.
    • (1989) J. Ningbo Univ. , vol.2 , Issue.2 , pp. 105-108
    • Yang, R.-E.1    Cao, D.-J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.