-
1
-
-
0000284430
-
The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane
-
I. M. Anderson and N. Kamran, The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane, Duke Math. J. 87 (1997), 265-319.
-
(1997)
Duke Math. J
, vol.87
, pp. 265-319
-
-
Anderson, I.M.1
Kamran, N.2
-
2
-
-
0002465093
-
Hyperbolic exterior differential systems and their conservation laws I
-
R. Bryant, P. A. Griffiths, and L. Hsu, Hyperbolic exterior differential systems and their conservation laws I, Selecta Math. New Ser. 1 (1995), 21-112.
-
(1995)
Selecta Math. New Ser
, vol.1
, pp. 21-112
-
-
Bryant, R.1
Griffiths, P.A.2
Hsu, L.3
-
5
-
-
0000790256
-
An obstruction to the integrability of a class of nonlinear wave equations by 1-stable Cartan characteristics
-
E. D. Fackerell, D. Hartley, and R. Tucker, An obstruction to the integrability of a class of nonlinear wave equations by 1-stable Cartan characteristics, J. Differential Equations 115 (1995), 153-165.
-
(1995)
J. Differential Equations
, vol.115
, pp. 153-165
-
-
Fackerell, E.D.1
Hartley, D.2
Tucker, R.3
-
7
-
-
0039291773
-
Characteristics and the geometry of hyperbolic equations in the plane
-
R. B. Gardner and N. Kamran, Characteristics and the geometry of hyperbolic equations in the plane, J. Differential Equations 104 (1993), 60-116.
-
(1993)
J. Differential Equations
, vol.104
, pp. 60-116
-
-
Gardner, R.B.1
Kamran, N.2
-
10
-
-
0004171145
-
-
Symmetries, Exact Solutions and Conservation Laws, CRC Press, Boca Raton, Fia
-
N. H. Ibragimov et al., CRC Handbook of Lie Group Analysis of Differential Equations, Volume 1: Symmetries, Exact Solutions and Conservation Laws, CRC Press, Boca Raton, Fia., 1995.
-
(1995)
CRC Handbook of Lie Group Analysis of Differential Equations
, vol.1
-
-
Ibragimov, N.H.1
-
12
-
-
0002254910
-
Generalized Laplace invariants and classical integration methods for second order scalar hyperbolic partial differential equations in the plane
-
Brno, 1995, Masaryk Univ., Brno
-
M. Juràš, “Generalized Laplace invariants and classical integration methods for second order scalar hyperbolic partial differential equations in the plane” in Differential Geometry and Applications (Brno, 1995), Masaryk Univ., Brno, 1996, 275-284.
-
(1996)
Differential Geometry and Applications
, pp. 275-284
-
-
Juràš, M.1
-
13
-
-
3042735072
-
Lie Equations
-
Princeton Univ. Press, Princeton
-
A. Kumpera and D. Spencer, Lie Equations, Vol. 1: General Theory, Ann. Math. Stud. 73, Princeton Univ. Press, Princeton, 1972.
-
(1972)
General Theory, Ann. Math. Stud
, vol.1
, pp. 73
-
-
Kumpera, A.1
Spencer, D.2
-
14
-
-
0002318306
-
The symmetry approach to classification of integrable systems
-
V. E. Zakharov, Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin
-
A. V. Mikhailov, A. B. Shabat, and V. V. Sokolov, “The symmetry approach to classification of integrable systems” in What Is integrability?, ed. V. E. Zakharov, Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin, 1991, 115-184.
-
(1991)
What is Integrability?
, pp. 115-184
-
-
Mikhailov, A.V.1
Shabat, A.B.2
Sokolov, V.V.3
-
15
-
-
0001692213
-
On the Darboux integrable hyperbolic equations
-
V. V. Sokolov and A. V. Zhiber, On the Darboux integrable hyperbolic equations, Phys. Lett. A 208 (1995), 303-308.
-
(1995)
Phys. Lett. A
, vol.208
, pp. 303-308
-
-
Sokolov, V.V.1
Zhiber, A.V.2
-
16
-
-
84972567177
-
On variation bicomplexes associated to differential equations
-
T. Tsujishita, On variation bicomplexes associated to differential equations, Osaka J. Math. 19 (1982), 311-363.
-
(1982)
Osaka J. Math
, vol.19
, pp. 311-363
-
-
Tsujishita, T.1
-
17
-
-
0040721736
-
Geometry and the method of Darboux
-
V. Hussin, Univ. de Montreal, Montreal
-
P. J. Vassiliou, “Geometry and the method of Darboux” in Lie Theory, Differential Equations and Representation Theory, ed. V. Hussin, Univ. de Montreal, Montreal, 1990, 395-404.
-
(1990)
Lie Theory, Differential Equations and Representation Theory
, pp. 395-404
-
-
Vassiliou, P.J.1
-
18
-
-
0002929391
-
Sur les équations aux dérivées partielles du second ordre F(X, y, z, p, q, r, s, t) =0, intégrables par la méthode de Darboux
-
E. Vessiot, Sur les équations aux dérivées partielles du second ordre F(x, y, z, p, q, r, s, t) =0, intégrables par la méthode de Darboux, J. Math. Pures Appl. (9) 18 (1939), 1-61.
-
(1939)
J. Math. Pures Appl
, vol.18
, Issue.9
, pp. 1-61
-
-
Vessiot, E.1
-
19
-
-
0002929391
-
Sur les équations aux dérivées partielles du second ordre F(X, y, z, p, q, r, s, t) = 0, intégrables par la méthode de Darboux
-
E. Vessiot, Sur les équations aux dérivées partielles du second ordre F(x, y, z, p, q, r, s, t) = 0, intégrables par la méthode de Darboux, J. Math. Pures Appl. (9) 21 (1942), 1-66.
-
(1942)
J. Math. Pures Appl
, vol.21
, Issue.9
, pp. 1-66
-
-
Vessiot, E.1
|