-
3
-
-
5344221086
-
-
Grebogi [C. Grebogi, S. W. McDonald, E. Ott and J. A. Yorke, Phys. Lett. A 110, 1 (1985)] introduced the definition of exterior dimension to characterize fractals. Let S be a closed, bounded fractal set, and let S(ε) be the set that includes the original set S and all points within a distance epsilon of S. Define the exterior dimension to be dex=D- limε->0 ln V(S¯(ε ) )/ ln epsilon, where S bar(ε) =S(ε) -S is what remains of S(ε) if the original set S is deleted, and V denotes volume. For thin fractal sets, V(S)=0 and, hence, dex reduces to the usual box-counting dimension. For fractal sets, dex is related to the uncertainty exponent alpha, since P( ε ) can also be interpreted as the probability of making an error by saying that a point x vec0 lies in S if the perturbed point x vec0+- epsilon does not lie in S, or the probability of being wrong by saying that a point x vec0 does not lie in S when x vec0+- epsilon is determined to lie in S. Thus, P( ε ) is proportional to V (S¯( ε ) ). Since P( ε ) app εalpha, this leads to α =D-dex. For the logistic map, alpha is equivalent to another exponent introduced by Farmer [C. Grebogi, E. Ott and J. A. Yorke, Phys. Rev. Lett. 56, 266 (1986)].
-
(1986)
Phys. Rev. Lett.
, vol.56
, pp. 266
-
-
Grebogi, C.1
Ott, E.2
Yorke, J.A.3
-
4
-
-
0000528202
-
-
C. Grebogi, S. W. McDonald, E. Ott and J. A. Yorke, Phys. Lett. A 99, 415 (1983).
-
(1983)
Phys. Lett. A
, vol.99
, pp. 415
-
-
Grebogi, C.1
McDonald, S.W.2
Ott, E.3
Yorke, J.A.4
-
5
-
-
24444476675
-
-
S. W. McDonald, C. Grebogi, E. Ott and J. A. Yorke, Physica D 17, 125 (1985).
-
(1985)
Physica D
, vol.17
, pp. 125
-
-
McDonald, S.W.1
Grebogi, C.2
Ott, E.3
Yorke, J.A.4
-
6
-
-
0000711745
-
-
J. C. Alexander, J. A. Yorke, Z. You and I. Kan, Int. J. Bifurc. Chaos 2, 795 (1992).
-
(1992)
Int. J. Bifurc. Chaos
, vol.2
, pp. 795
-
-
Alexander, J.C.1
Yorke, J.A.2
You, Z.3
Kan, I.4
-
7
-
-
0001163936
-
-
E. Ott, J. C. Sommerer, J. C. Alexander, I. Kan and J. A. Yorke, Phys. Rev. Lett. 71, 4134 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 4134
-
-
Ott, E.1
Sommerer, J.C.2
Alexander, J.C.3
Kan, I.4
Yorke, J.A.5
-
8
-
-
33847573999
-
-
E. Ott, J. C. Alexander, I. Kan, J. C. Sommerer and J. A. Yorke, Physica D 76, 384 (1994).
-
(1994)
Physica D
, vol.76
, pp. 384
-
-
Ott, E.1
Alexander, J.C.2
Kan, I.3
Sommerer, J.C.4
Yorke, J.A.5
-
13
-
-
0000661931
-
-
E. Ott, Y. Du, K. R. Sreenivasan, A. Juneja and A. K. Suri, Phys. Rev. Lett. 69, 2654 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.69
, pp. 2654
-
-
Ott, E.1
Du, Y.2
Sreenivasan, K.R.3
Juneja, A.4
Suri, A.K.5
-
16
-
-
85035238169
-
-
We choose to study the sign scaling behavior of the maximum Lyapunov exponent because it characterizes the nature of the asymptotic attractors (chaotic versus nonchaotic). Other physical quantities that are defined with respect to the riddled fractal sets, which change sign on fine scales, can exhibit the sign-singular scaling behavior and thus can also be used to characterize the riddled fractals.
-
We choose to study the sign scaling behavior of the maximum Lyapunov exponent because it characterizes the nature of the asymptotic attractors (chaotic versus nonchaotic). Other physical quantities that are defined with respect to the riddled fractal sets, which change sign on fine scales, can exhibit the sign-singular scaling behavior and thus can also be used to characterize the riddled fractals.
-
-
-
|