메뉴 건너뛰기




Volumn 41, Issue 7, 1990, Pages 4017-4032

Andreev scattering in anisotropic superconductors

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0000954650     PISSN: 01631829     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevB.41.4017     Document Type: Article
Times cited : (302)

References (62)
  • 8
    • 84927892577 scopus 로고    scopus 로고
    • They call those superconductors ``conventional'' in which gauge symmetry is the only broken symmetry, i.e., the order parameter has the same symmetry as the underlying crystal. A superconductor with additional broken symmetries they call ``unconventional.'' For spherical Fermi surfaces, ``anisotropic'' and ``unconventional'' have the same meaning (since any anisotropic state will break the spherical symmetry). In a lattice, however, a state described by an order parameter with lines or points of zeroes on the Fermi surface that is invariant under the symmetry group of the lattice is conventional but anisotropic. Since we are interested in the existence or nonexistence of these lines or points in the gap, is anisotropic superconductors we want to identify—be they conventional or not.
  • 47
    • 84927892575 scopus 로고    scopus 로고
    • Δ hat is a matrix in particle-hole space. It is antisymmetric because of the conventional factor τ hat3 in (3.2) and n o t because we are looking on even-parity superconductors.
  • 53
    • 84927892573 scopus 로고    scopus 로고
    • Remember that the parameter R describes the i n t r i n s i c reflectivity of the interface that has nothing to do with superconductivity. Only for E >> Δ0 do we get RN-> R.
  • 54
    • 84927892571 scopus 로고    scopus 로고
    • P. A. M. Benistant, Ph. D. thesis, University of Nijmegen, 1984.
  • 55
    • 84927892570 scopus 로고    scopus 로고
    • H. F. C. Hoevers, Ph.D. thesis, University of Nijmegen, 1987.
  • 59
    • 84927892564 scopus 로고    scopus 로고
    • A. C. Mota, Habilitationsschrift, ETH Zürich, 1988.
  • 61
    • 84927892563 scopus 로고    scopus 로고
    • To obtain (C4) from (5.9), we have to use (C3) and lcurl s hat , d hat rcurl =0 which follows from the normalization condition g hat2= - π2 and usual tricks like ( a vec cdot τ vec ) ( b vec cdot τ vec ) = a vec cdot b vec + i ( a vec times b vec ) cdot τ vec.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.