-
2
-
-
84931536371
-
-
Am. J. Phys. 47, 188 (1979).
-
(1979)
Am. J. Phys.
, vol.47
, pp. 188
-
-
-
6
-
-
0011683836
-
-
Am. J. Phys. 31, 66 (1963).
-
(1963)
Am. J. Phys.
, vol.31
, pp. 66
-
-
-
10
-
-
0000847290
-
-
See, e.g., V. Bužek, G. Drobný, G. Adam, R. Derka, and P. L. Knight, J. Mod. Opt. 44, 2607 (1997);
-
(1997)
J. Mod. Opt.
, vol.44
, pp. 2607
-
-
Bužek, V.1
Drobný, G.2
Adam, G.3
Derka, R.4
Knight, P.L.5
-
11
-
-
0008257781
-
-
for an extensive presentation of the use of the Jaynes principle, see W. T. Grandy, Am. J. Phys. 65, 466 (1997).
-
(1997)
Am. J. Phys.
, vol.65
, pp. 466
-
-
Grandy, W.T.1
-
12
-
-
18444374233
-
-
The term "Jaynes principle" is due to the fact that it was Jaynes who interpreted maximization of entropy in terms of information as a primitive notion. Note that the idea of "information without probability" was independently proposed by R. S. Ingarden and K. Urbanik, Bull. Acad. Pol. Sci., Ser. Sci., Math., Astron. Phys. 9, 313 (1961).
-
(1961)
Bull. Acad. Pol. Sci., Ser. Sci., Math., Astron. Phys.
, vol.9
, pp. 313
-
-
Ingarden, R.S.1
Urbanik, K.2
-
14
-
-
4243059985
-
-
C. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 1895
-
-
Bennett, C.1
Brassard, G.2
Crepeau, C.3
Jozsa, R.4
Peres, A.5
Wootters, W.K.6
-
19
-
-
18444373615
-
-
note
-
CHSH=a⊗b + a⊗b′+a′⊗b- a′⊗b′ where a,b,a′,b′ are dichotomic observables.
-
-
-
-
20
-
-
36049056258
-
-
J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).
-
(1969)
Phys. Rev. Lett.
, vol.23
, pp. 880
-
-
Clauser, J.F.1
Horne, M.A.2
Shimony, A.3
Holt, R.A.4
-
23
-
-
18444390629
-
-
note
-
For a review of entanglement measures and their properties, see Ref. [17] (see also [18]). In particular, entanglement measure is required to have an important property: it cannot increase under the operation consisting of local quantum operation and classical communication. The latter property implies that entanglement measures are convex functions.
-
-
-
-
26
-
-
18444409699
-
-
G. Vidal, e-print quant-ph/9807077
-
G. Vidal, e-print quant-ph/9807077.
-
-
-
-
27
-
-
18444367736
-
-
note
-
Since the constraints are linear, and entanglement measures are convex functions, the set of states with minimal entanglement is convex. Consequently, as entropy is a strictly convex function, maximizing entropy over the convex set we obtain a unique state.
-
-
-
-
28
-
-
4243216277
-
-
C. H. Bennett, D. P. Di Vincenzo, J. Smolin, and W. K. Wootters, Phys. Rev. A 54, 3814 (1996).
-
(1996)
Phys. Rev. A
, vol.54
, pp. 3814
-
-
Bennett, C.H.1
Di Vincenzo, D.P.2
Smolin, J.3
Wootters, W.K.4
-
29
-
-
4444269235
-
-
V. Vedral, M. B. Plenio, K. Jacobs, and P. L. Knight, Phys. Rev. Lett. 78, 2275 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 2275
-
-
Vedral, V.1
Plenio, M.B.2
Jacobs, K.3
Knight, P.L.4
-
30
-
-
4644359625
-
-
There is an analytical formula for entanglement of the formation of any two spin-1/2 state, see S. Hill and W. K. Wooters, Phys. Rev. Lett. 78, 5022 (1997);
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 5022
-
-
Hill, S.1
Wooters, W.K.2
-
33
-
-
4243789313
-
-
C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 722
-
-
Bennett, C.H.1
Brassard, G.2
Popescu, S.3
Schumacher, B.4
Smolin, J.5
Wootters, W.K.6
-
39
-
-
0001661820
-
-
H. Barnum, Ch. Fuchs, R. Jozsa, and B. Schumacher, Phys. Rev. A 54, 4707 (1996).
-
(1996)
Phys. Rev. A
, vol.54
, pp. 4707
-
-
Barnum, H.1
Fuchs, Ch.2
Jozsa, R.3
Schumacher, B.4
-
40
-
-
0000642586
-
-
R. Jozsa, M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett. 81, 1714 (1998);
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 1714
-
-
Jozsa, R.1
Horodecki, M.2
Horodecki, P.3
Horodecki, R.4
|