-
1
-
-
0001560673
-
The cohomology ring of the colored braid group
-
V.I. Arnold, The cohomology ring of the colored braid group, Mat. Zametki 5 (1969) 227-231; Math. Notes 5 (1969) 138-140.
-
(1969)
Mat. Zametki
, vol.5
, pp. 227-231
-
-
Arnold, V.I.1
-
2
-
-
0001560677
-
-
V.I. Arnold, The cohomology ring of the colored braid group, Mat. Zametki 5 (1969) 227-231; Math. Notes 5 (1969) 138-140.
-
(1969)
Math. Notes
, vol.5
, pp. 138-140
-
-
-
3
-
-
38249010606
-
The fundamental group of the complement of an arrangement of complex hyperplanes
-
W. Arvola, The fundamental group of the complement of an arrangement of complex hyperplanes, Topology 31 (1992) 757-765.
-
(1992)
Topology
, vol.31
, pp. 757-765
-
-
Arvola, W.1
-
6
-
-
0002875137
-
Sur les groupes de tresses (d'après V.I. Arnol'd), Séminaire Bourbaki 1971/72
-
Springer, Berlin
-
Brieskorn, Sur les groupes de tresses (d'après V.I. Arnol'd), Séminaire Bourbaki 1971/72, Lecture Notes in Math. 317 (Springer, Berlin, 1973) 21-14.
-
(1973)
Lecture Notes in Math.
, vol.317
, pp. 21-114
-
-
Brieskorn1
-
7
-
-
0003340443
-
Cohomology of groups
-
Springer, Berlin
-
[6| K.S. Brown, Cohomology of Groups, Graduate Texts in Math. 87 (Springer, Berlin, 1982).
-
(1982)
Graduate Texts in Math.
, vol.87
-
-
Brown, K.S.1
-
8
-
-
0003255543
-
Groups of cohomological dimension one
-
Springer, Berlin
-
D.E. Cohen, Groups of Cohomological Dimension One, Lecture Notes in Math. 245 (Springer, Berlin, 1972).
-
(1972)
Lecture Notes in Math.
, vol.245
-
-
Cohen, D.E.1
-
9
-
-
0000650424
-
Les immeubles des groupes de tresses généralisés
-
P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972) 273-302.
-
(1972)
Invent. Math.
, vol.17
, pp. 273-302
-
-
Deligne, P.1
-
10
-
-
0001198847
-
On the homotopy theory of arrangements
-
Complex Analytic Singularities, North-Holland
-
M. Falk and R. Randell, On the homotopy theory of arrangements, in: Complex Analytic Singularities, Adv. Stud. Pure Math. 8 (North-Holland, 1987) 101-124.
-
(1987)
Adv. Stud. Pure Math.
, vol.8
, pp. 101-124
-
-
Falk, M.1
Randell, R.2
-
11
-
-
0001232942
-
The braid groups
-
R. Fox and L. Neuwirth, The braid groups, Math. Scand. 10 (1962) 119-126.
-
(1962)
Math. Scand.
, vol.10
, pp. 119-126
-
-
Fox, R.1
Neuwirth, L.2
-
13
-
-
0000195049
-
Un théorème de Zariski du type de Lefschetz
-
H. Hamm and D.T. Lê, Un théorème de Zariski du type de Lefschetz, Ann. Sci. École Norm. Sup. (4) 6 (1973) 317-366.
-
(1973)
Ann. Sci. École Norm. Sup. (4)
, vol.6
, pp. 317-366
-
-
Hamm, H.1
Lê, D.T.2
-
14
-
-
0000536672
-
n minus a finite number of affine hyperplanes in general position
-
n minus a finite number of affine hyperplanes in general position. J. Fac. Sci. Univ. Tokyo 22 (1975) 205-219.
-
(1975)
J. Fac. Sci. Univ. Tokyo
, vol.22
, pp. 205-219
-
-
Hattori, H.1
-
16
-
-
0002982313
-
Singular points of complex hypersurfaces
-
Princeton Univ. Press, Princeton
-
J. Milnor, Singular Points of Complex Hypersurfaces. Ann. of Math. Stud. (Princeton Univ. Press, Princeton, 1968).
-
(1968)
Ann. of Math. Stud.
-
-
Milnor, J.1
-
17
-
-
0000460110
-
Combinatorics and topology of complements of hyperplanes
-
P. Orlik and L. Solomon, Combinatorics and topology of complements of hyperplanes. Invent. Math. 56 (1980) 167-189.
-
(1980)
Invent. Math.
, vol.56
, pp. 167-189
-
-
Orlik, P.1
Solomon, L.2
-
18
-
-
0003283210
-
Arrangements of hyperplanes
-
Springer, New York
-
P. Orlik and H. Terao, Arrangements of Hyperplanes, Grundlehren Math. Wiss. 300 (Springer, New York, 1992).
-
(1992)
Grundlehren Math. Wiss.
, vol.300
-
-
Orlik, P.1
Terao, H.2
-
19
-
-
0000869252
-
The fundamental group of the complement of a union of complex hyperplanes
-
Correction: Invent. Math. 80 (1985) 467-468.
-
R. Randell, The fundamental group of the complement of a union of complex hyperplanes, Invent. Math. 69 (1982) 103-108. Correction: Invent. Math. 80 (1985) 467-468.
-
(1982)
Invent. Math.
, vol.69
, pp. 103-108
-
-
Randell, R.1
-
20
-
-
84966257431
-
Lattice-isotopic arrangements are topologically isomorphic
-
R. Randell, Lattice-isotopic arrangements are topologically isomorphic, Proc. Amer. Math. Soc. 107 (1989) 555-559.
-
(1989)
Proc. Amer. Math. Soc.
, vol.107
, pp. 555-559
-
-
Randell, R.1
|