-
1
-
-
0003689529
-
A trust region method based on interior point techniques for nonlinear programming
-
Optimization Technology Center, Northwestern University, Evanston, IL, USA. Revised August
-
Byrd, R.H., Gilbert, J.Ch., Nocedal, J. (1996): A trust region method based on interior point techniques for nonlinear programming. Technical Report OTC 96/02, Optimization Technology Center, Northwestern University, Evanston, IL, USA. Revised August 1998
-
(1996)
Technical Report OTC 96/02
-
-
Byrd, R.H.1
Gilbert, J.Ch.2
Nocedal, J.3
-
2
-
-
0033471382
-
An interior point algorithm for large-scale nonlinear programming
-
Byrd, R.H., Hribar, M.E., Nocedal, J. (1999): An interior point algorithm for large-scale nonlinear programming. SIAM J. Optim. 9, 877-900
-
(1999)
SIAM J. Optim.
, vol.9
, pp. 877-900
-
-
Byrd, R.H.1
Hribar, M.E.2
Nocedal, J.3
-
3
-
-
0034599835
-
A reduced space interior point strategy for optimization of differential algebraic systems
-
Cervantes, A.M., Wächter, A., Tütüncü, R.H., Biegler, L.T. (2000): A reduced space interior point strategy for optimization of differential algebraic systems. Comput. Chem. Eng. 24, 39-51
-
(2000)
Comput. Chem. Eng.
, vol.24
, pp. 39-51
-
-
Cervantes, A.M.1
Wächter, A.2
Tütüncü, R.H.3
Biegler, L.T.4
-
4
-
-
0030541525
-
On the formulation and theory of the Newton interior-point method for nonlinear programming
-
El-Bakry, A.S., Tapia, R.A., Tsuchiya, T., Zhang, Y. (1996): On the formulation and theory of the Newton interior-point method for nonlinear programming. J. Optim. Theory Appl. 89, 507-541
-
(1996)
J. Optim. Theory Appl.
, vol.89
, pp. 507-541
-
-
El-Bakry, A.S.1
Tapia, R.A.2
Tsuchiya, T.3
Zhang, Y.4
-
6
-
-
0032358968
-
Primal-dual interior methods for nonconvex nonlinear programming
-
Forsgren, A., Gill, P.E. (1998): Primal-dual interior methods for nonconvex nonlinear programming. SIAM J. Optim. 8, 1132-1152
-
(1998)
SIAM J. Optim.
, vol.8
, pp. 1132-1152
-
-
Forsgren, A.1
Gill, P.E.2
-
7
-
-
0002688960
-
A primal-dual interior method for nonconvex nonlinear programming
-
Yuan, Y., ed., Kluwer Academic Publishers, Dordrecht
-
Gay, D.M., Overton, M.L., Wright, M.H. (1998): A primal-dual interior method for nonconvex nonlinear programming. In: Yuan, Y., ed., Advances in Nonlinear Programming. Kluwer Academic Publishers, Dordrecht, pp. 31-56
-
(1998)
Advances in Nonlinear Programming
, pp. 31-56
-
-
Gay, D.M.1
Overton, M.L.2
Wright, M.H.3
-
8
-
-
0002267248
-
A barrier method for large-scale constrained optimization
-
Nash, S.G., Sofer, A. (1993): A barrier method for large-scale constrained optimization. ORSA J. Comput. 5, 40-53
-
(1993)
ORSA J. Comput.
, vol.5
, pp. 40-53
-
-
Nash, S.G.1
Sofer, A.2
-
9
-
-
0002207938
-
A fast algorithm for nonlinearly constrained optimization calculations
-
Watson, G.A., ed., Numerical Analysis, Dundee Springer, Berlin
-
Powell, M.J.D. (1978): A fast algorithm for nonlinearly constrained optimization calculations. In: Watson, G.A., ed., Numerical Analysis, Dundee 1977. Vol. 630 of Lect. Notes Math., Springer, Berlin
-
(1977)
Lect. Notes Math.
, vol.630
-
-
Powell, M.J.D.1
-
10
-
-
0000287204
-
An interior-point algorithm for nonconvex nonlinear programming
-
Vanderbei, R.J., Shanno, D.F. (1999): An interior-point algorithm for nonconvex nonlinear programming. Comput. Optim. Appl. 13, 231-252
-
(1999)
Comput. Optim. Appl.
, vol.13
, pp. 231-252
-
-
Vanderbei, R.J.1
Shanno, D.F.2
-
11
-
-
0003456156
-
-
Technical report, Mathematical System Institute, Inc., Tokyo, Japan. Revised March
-
Yamashita, H. (1992): A globally convergent primal-dual interior-point method for constrained optimization. Technical report, Mathematical System Institute, Inc., Tokyo, Japan. Revised March 1994
-
(1992)
A Globally Convergent Primal-dual Interior-point Method for Constrained Optimization
-
-
Yamashita, H.1
-
12
-
-
0003456151
-
-
Technical report, Mathematical System Institute, Inc., Tokyo, Japan. Revised July
-
Yamashita, H., Yabe, H., Tanabe, T. (1997): A globally and superlinearly convergent primal-dual interior point trust region method for large scale constrained optimization. Technical report, Mathematical System Institute, Inc., Tokyo, Japan. Revised July 1998
-
(1997)
A Globally and Superlinearly Convergent Primal-dual Interior Point Trust Region Method for Large Scale Constrained Optimization
-
-
Yamashita, H.1
Yabe, H.2
Tanabe, T.3
|