-
3
-
-
4444264948
-
-
For reviews, see
-
For reviews, see: a) R. F. Heck, Acc. Chem. Res. 1979, 12, 146.
-
(1979)
Acc. Chem. Res.
, vol.12
, pp. 146
-
-
Heck, R.F.1
-
9
-
-
33847088408
-
-
a) E. I. Negishi, A. O. King, N. Okukado, J. Org. Chem. 1977, 42, 1821.
-
(1977)
J. Org. Chem.
, vol.42
, pp. 1821
-
-
Negishi, E.I.1
King, A.O.2
Okukado, N.3
-
10
-
-
0000290760
-
-
b) A. Minato, K. Tamao, T. Hayashi, K. Suzuki, M. Kumada, Tetrahedron Lett. 1980, 845;
-
(1980)
Tetrahedron Lett.
, pp. 845
-
-
Minato, A.1
Tamao, K.2
Hayashi, T.3
Suzuki, K.4
Kumada, M.5
-
13
-
-
0002654697
-
-
d) E. I. Negishi, T. Hayashi, A. O. King, Organic Synthesis 1987, 66, 67.
-
(1987)
Organic Synthesis
, vol.66
, pp. 67
-
-
Negishi, E.I.1
Hayashi, T.2
King, A.O.3
-
14
-
-
0001640553
-
-
e) C. Amatore, A. Jutand, S. Negri, J.-F. Fauvarque, J. Organomet. Chem. 1990, 390, 389.
-
(1990)
J. Organomet. Chem.
, vol.390
, pp. 389
-
-
Amatore, C.1
Jutand, A.2
Negri, S.3
Fauvarque, J.-F.4
-
15
-
-
0041025238
-
-
a) M. F. Semmelhack, P. M. Helquist, L. D. Jones, J. Am. Chem. Soc. 1971, 93, 5908.
-
(1971)
J. Am. Chem. Soc.
, vol.93
, pp. 5908
-
-
Semmelhack, M.F.1
Helquist, P.M.2
Jones, L.D.3
-
17
-
-
33845557330
-
-
c) M. F. Semmelhack, P. M. Helquist, L. D. Jones, L. Keller, L. Mendelson, L. S. Ryono, J. G. Smith, R. D. Stauffer, ibid. 1981, 103, 6460.
-
(1981)
J. Am. Chem. Soc.
, vol.103
, pp. 6460
-
-
Semmelhack, M.F.1
Helquist, P.M.2
Jones, L.D.3
Keller, L.4
Mendelson, L.5
Ryono, L.S.6
Smith, J.G.7
Stauffer, R.D.8
-
18
-
-
0000756083
-
-
a) M. Zembayashi, K. Tamao, J. Yoshida, M. Kumada, Tetrahedron Lett. 1977, 4089.
-
(1977)
Tetrahedron Lett.
, pp. 4089
-
-
Zembayashi, M.1
Tamao, K.2
Yoshida, J.3
Kumada, M.4
-
20
-
-
0001724313
-
-
For a review and discussion of several electrochemical processes based on Eq. (4), see
-
For a review and discussion of several electrochemical processes based on Eq. (4), see: a) C. Amatore, A. Jutand, Organometallics 1988, 7, 2203.
-
(1988)
Organometallics
, vol.7
, pp. 2203
-
-
Amatore, C.1
Jutand, A.2
-
22
-
-
0000052698
-
-
a) C. Amatore, A. Jutand, F. Khalil, M. F. Nielsen, J. Am. Chem. Soc. 1992, 114, 7076.
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 7076
-
-
Amatore, C.1
Jutand, A.2
Khalil, F.3
Nielsen, M.F.4
-
23
-
-
84890836103
-
-
note
-
-. So under such circumstances (Ar = phenyl) a CE mechanism cannot take place at the electrode surface despite the reversibility of reaction (6) [7a].
-
-
-
-
24
-
-
84890809500
-
-
note
-
2 in a CE mechanism [12].
-
-
-
-
25
-
-
0000900762
-
-
a) C. Amatore, M. Azzabi, A. Jutand, J. Am. Chem. Soc. 1991, 113, 8375.
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 8375
-
-
Amatore, C.1
Azzabi, M.2
Jutand, A.3
-
26
-
-
0003768971
-
-
For the general electrochemical behavior of CE mechanisms, see: Wiley, New York
-
b) For the general electrochemical behavior of CE mechanisms, see: A. J. Bard, L. R. Faulkner, Electrochemical Methods, Wiley, New York, 1980. pp. 443-451.
-
(1980)
Electrochemical Methods
, pp. 443-451
-
-
Bard, A.J.1
Faulkner, L.R.2
-
27
-
-
84890808419
-
-
note
-
3 [reverse of Eq. (11)][14].
-
-
-
-
28
-
-
84890839646
-
-
note
-
2 (which occus at less positive potentials) or the homogeneous steps. For this reason, and for sake of simplicity in the following, we use the same label for the two waves.
-
-
-
-
30
-
-
84890823028
-
-
note
-
3) corresponds to the two-electron oxidation of the zerovalent palladium moiety formed in Equation (6) [7a,b]. The second, labeled O*(cf. Fig. 1a and Table 2), is observed only when the decomposition in Equation (6) affords σ-aryl anions with rather long lifetimes (i.e., larger than a few milliseconds, as for the 2-thienyl σ-anion in this study, but not for the substituted phenyl ones) and corresponds to the oxidation of the σ-aryl anion.
-
-
-
-
31
-
-
84890821734
-
-
note
-
1 is present in the diffusion layer in a non-oxidizable form [Eq. (24)].
-
-
-
-
32
-
-
84890850083
-
-
note
-
1 has never been described in detail. However, since a two-electron direct reduction can be discounted, this reduction certainly proceeds through an EE- or ECE-based mechanism [12], i.e., through the production of a short-lived arylpalladium(I) intermediate.
-
-
-
-
35
-
-
84890843072
-
-
note
-
2 in DMF relative to THF is consistent with the existence of equilibrium (9) in DMF. Indeed, both equilibria (i.e., Eqs. (6) or (9)) are expected to be displaced toward their right-hand side in DMF relative to THF, owing to a stronger stabilization of low-coordinate palladium(0) moieties in DMF.
-
-
-
-
36
-
-
49149133224
-
-
a) J. F. Fauvarque, F. Pflüger, M. Troupel, J. Organomet. Chem. 1981, 208, 419.
-
(1981)
J. Organomet. Chem.
, vol.208
, pp. 419
-
-
Fauvarque, J.F.1
Pflüger, F.2
Troupel, M.3
-
38
-
-
0002295547
-
-
+], M = Li, Na, K, etc.). For reactivity of electrogenerated bases, see e.g., (Eds.: H. Lund, M. Baizer), Dekker, New York, Chap. 30
-
+], M = Li, Na, K, etc.). For reactivity of electrogenerated bases, see e.g., M. Baizer, Organic Electrochemistry (Eds.: H. Lund, M. Baizer), Dekker, New York, 1991, Chap. 30, pp. 1265-1277.
-
(1991)
Organic Electrochemistry
, pp. 1265-1277
-
-
Baizer, M.1
-
39
-
-
0002600550
-
-
For a review, see e.g. (Eds.: H., Lund, M., Baizer), Dekker, New York, Chap. 7
-
For a review, see e.g. D. G. Peters, Organic Electrochemistry, (Eds.: H., Lund, M., Baizer), Dekker, New York, 1991, Chap. 7, pp. 331-359.
-
(1991)
Organic Electrochemistry
, pp. 331-359
-
-
Peters, D.G.1
-
40
-
-
84890814888
-
-
note
-
The fact that two-electron waves are observed for the reduction of aryl halides (i.e. Thl or Phl here) establishes that the σ-aryl anion does not react with its precursor. Indeed, such a father - son process would correspond to a one-electron overall stoichiometry [18].
-
-
-
-
41
-
-
0022418082
-
-
Compare e.g. and references therein
-
Compare e.g. C. Amatore, G. Capobianco, G. Farnia, G. Sandonà, J. M. Savéant, M. G. Severin, E. Vianello, J. Am. Chem. Soc. 1985, 107, 1815, and references therein.
-
(1985)
J. Am. Chem. Soc.
, vol.107
, pp. 1815
-
-
Amatore, C.1
Capobianco, G.2
Farnia, G.3
Sandonà, G.4
Savéant, J.M.5
Severin, M.G.6
Vianello, E.7
-
42
-
-
84890843361
-
-
note
-
-1) of an authentic sample of 2-phenylthiophene prepared according to ref. [3e].
-
-
-
-
43
-
-
84890853473
-
-
note
-
2.
-
-
-
-
44
-
-
84890825946
-
-
note
-
0.
-
-
-
-
45
-
-
84890829267
-
-
note
-
o/i) is plotted as a function of [Ar′X]/ν (compare Eq. (19) and Fig. 4a). since ΔE is constant for the series of measurements.
-
-
-
-
46
-
-
84890816532
-
-
This is required to ensure the constancy of the function d in Equations (17) and (18) (see Experimental Section)
-
This is required to ensure the constancy of the function d in Equations (17) and (18) (see Experimental Section).
-
-
-
-
47
-
-
0001606053
-
-
C. Amatore, A. Jutand, A. Suarez, J. Am. Chem. Soc. 1993, 115, 9531.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 9531
-
-
Amatore, C.1
Jutand, A.2
Suarez, A.3
-
48
-
-
33847803880
-
-
trans-Bisarylpalladium(II) complexes are not supposed to undergo direct reductive elimination, yet, since this step was not investigated kinetically in this work, we preferred to formulate it as a global reaction. For the involvement of bisarylpalladium(II) complexes in palladium-catalyzed biaryl synthesis and their ability to undergo facile reductive elimination of biaryls, see refs. [1-2] and
-
a) trans-Bisarylpalladium(II) complexes are not supposed to undergo direct reductive elimination, yet, since this step was not investigated kinetically in this work, we preferred to formulate it as a global reaction. For the involvement of bisarylpalladium(II) complexes in palladium-catalyzed biaryl synthesis and their ability to undergo facile reductive elimination of biaryls, see refs. [1-2] and G. W. Parshall, J. Am. Chem. Soc. 1974, 96, 2360;
-
(1974)
J. Am. Chem. Soc.
, vol.96
, pp. 2360
-
-
Parshall, G.W.1
-
49
-
-
0002215550
-
-
E.-I. Negishi, T. Takahashi, K. Akiyoshi, J. Organomet. Chem. 1981, 334, 181.
-
(1981)
J. Organomet. Chem.
, vol.334
, pp. 181
-
-
Negishi, E.-I.1
Takahashi, T.2
Akiyoshi, K.3
-
50
-
-
84890812531
-
-
note
-
b) Such intermediates are expected to be reducible. However, in this study, examination of the reductive side of the voltammograms was hampered because of the excess of iodobenzene or para-substituted iodobenzene under our experimental conditions.
-
-
-
-
51
-
-
84890845215
-
-
note
-
c) Since we have no structural information on the bisarylpalladium(II) intermediate, we postulate that this is a classical trans complex only to remain in agreement with previous authors (see [25a]). This species may, however, be, for example, a cis complex or a solvent-coordinated neutral pentacoordinate species [24]. Note that our conclusion must remain true because of stoichiometry, even when the final product of Scheme 4 is not a classical bisarylpalladium(II) complex.
-
-
-
-
52
-
-
84890817569
-
-
note
-
2 (Y = X or X′), which is reducible at this potential [24].
-
-
-
-
53
-
-
84890814613
-
-
note
-
The yields of homo- or heterocoupling products were less than 10%, and a few percent of products resulting from coupling with the phenyls borne by the phosphine ligands were also produced. Moreover, most of the aryl halides reactants underwent reduction. This indicates that the palladium catalyst is rapidly decomposed when the reaction is performed on a preparative scale in THF. The same occurs when the reaction is performed in a batch procedure in THF (compare Table 1, last row, in DMF).
-
-
-
-
54
-
-
0006740324
-
-
2 complexes with strong nucleophilic bases, see e.g.
-
2 complexes with strong nucleophilic bases, see e.g. H. Nakazawa, F. Ozawa, A. Yamamoto, Organometallics 1983, 2, 241.
-
(1983)
Organometallics
, vol.2
, pp. 241
-
-
Nakazawa, H.1
Ozawa, F.2
Yamamoto, A.3
-
55
-
-
33751155220
-
-
2 complexes, see e.g.
-
2 complexes, see e.g.: b) B. E. Segelstein, T. W. Butler, B. L. Chenard, J. Org. Chem. 1995, 60, 12
-
(1995)
J. Org. Chem.
, vol.60
, pp. 12
-
-
Segelstein, B.E.1
Butler, T.W.2
Chenard, B.L.3
-
61
-
-
0025476835
-
-
C. Amatore, M. Azzabi, P. Calas, A. Jutand, C. Lefrou, Y. Rollin, J. Electroanal. Chem. 1990, 288, 45.
-
(1990)
J. Electroanal. Chem.
, vol.288
, pp. 45
-
-
Amatore, C.1
Azzabi, M.2
Calas, P.3
Jutand, A.4
Lefrou, C.5
Rollin, Y.6
-
62
-
-
84890845182
-
-
note
-
1/2 [12]. Yet, for a given experiment, δ is a constant term since D, ΔE, and ν are constant. This allows straight divisions by δ to be performed under derivative and integral operators.
-
-
-
-
63
-
-
84890813695
-
-
note
-
2 is reached and is not complete after this peak is scanned. The real reaction time to be considered is therefore not ΔE/ν, but βΔE/ν. An average value β = 0.97 has been evaluated empirically by using simulations based on an ECEC mechanism with average ΔE and half-peak widths values comparable to those found in this study (cf. Fig. 1).
-
-
-
|