-
1
-
-
0028304539
-
-
J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson and A. Y. Cho, Science 264, 553 (1994).
-
(1994)
Science
, vol.264
, pp. 553
-
-
Faist, J.1
Capasso, F.2
Sivco, D.3
Sirtori, C.4
Hutchinson, A.5
Cho, A.6
-
2
-
-
0001698357
-
-
J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, S. N. G. Chu and A. Cho, Appl. Phys. Lett. 65, 2901 (1994).
-
(1994)
Appl. Phys. Lett.
, vol.65
, pp. 2901
-
-
Faist, J.1
Capasso, F.2
Sivco, D.3
Hutchinson, A.4
Sirtori, C.5
Chu, S.6
Cho, A.7
-
5
-
-
0002305529
-
-
M. Helm, P. England, E. Colas, F. DeRosa and S. J. Allen, Jr., Phys. Rev. Lett. 63, 74 (1989).
-
(1989)
Phys. Rev. Lett.
, vol.63
, pp. 74
-
-
Helm, M.1
England, P.2
Colas, E.3
DeRosa, F.4
Allen, S.5
-
6
-
-
0029634129
-
-
The experimentally investigated isolated quantum-well sample constitutes the central region of our hypothetical far-infrared tunneling structure; see Fig. 1
-
J. N. Heyman, K. Unterrainer, K. Craig, B. Galdrikian, M. S. Sherwin, K. Campman, P. F. Hopkins and A. C. Gossard, Phys. Rev. Lett. 74, 2682 (1995). The experimentally investigated isolated quantum-well sample constitutes the central region of our hypothetical far-infrared tunneling structure; see Fig. 1.
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 2682
-
-
Heyman, J.1
Unterrainer, K.2
Craig, K.3
Galdrikian, B.4
Sherwin, M.5
Campman, K.6
Hopkins, P.7
Gossard, A.8
-
9
-
-
21344445537
-
-
D. A. B. Miller, D. S. Chelma, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood and C. A. Burrus, Phys. Rev. Lett. 53, 2173 (1984).
-
(1984)
Phys. Rev. Lett.
, vol.53
, pp. 2173
-
-
Miller, D.1
Chelma, D.2
Damen, T.3
Gossard, A.4
Wiegmann, W.5
Wood, T.6
Burrus, C.7
-
10
-
-
33744572650
-
-
We estimate [see J. Bardeen, Phys. Rev. Lett. 6, 57 (1961) and N. S. Wingreen, Ph.D. dissertation, Cornell University, 1989] (Formula presented) ≈((Formula presented) /(Formula presented))(Formula presented) ((Formula presented)) with velocity (Formula presented)=(Formula presented), transmission probability (Formula presented)(E)=(Formula presented)texp[-(Formula presented)(Formula presented)]/((Formula presented)-E), lower collector band edge (Formula presented), and assuming a (Formula presented) =30 Å ((Formula presented) =214 meV) barrier thickness (height.) For the structure shown in Fig. 1 we predict only a (Formula presented) =0.40(0.93) meV to (Formula presented) =0.56(1.09) meV variation within the range 12≲V≲30 mV of voltage drops ensuring the upper-subband current injection. We neglect electron charging effects in these estimates of (Formula presented), noting that a (Formula presented) electron sheet density causes just a 10% change in the internal field ≈V/(Formula presented) at V∼20 mV. The moderate variation in (Formula presented) can be negated by a small change in the barrier thickness.
-
(1961)
Phys. Rev. Lett.
, vol.6
, pp. 57
-
-
Bardeen, J.1
-
11
-
-
0000029135
-
-
The strong nonequilibrium electron-electron scattering may also affect the study [see, for example, A. N. Korotkov, D. V. Averin and K. K. Likharev, Phys. Rev. B 49, 7548 (1994)] of possible continuous Bloch oscillations in a two-level tunneling structure.
-
(1994)
Phys. Rev. B
, vol.49
, pp. 7548
-
-
Korotkov, A.1
Averin, D.2
Likharev, K.3
-
14
-
-
33646612505
-
-
Ben Yu-Kuang Hu and S. Das Sarma, Phys. Rev. B 48, 5469 (1993).
-
(1993)
Phys. Rev. B
, vol.48
, pp. 5469
-
-
Das Sarma, S.1
-
15
-
-
12044254665
-
-
this paper reports and explains the corresponding voltage-drop dependence of the optical selection rules
-
J. Faist, F. Capasso, A. L. Hutchinson, L. Pfeiffer and K. W. West, Phys. Rev. Lett. 71, 3573 (1993); this paper reports and explains the corresponding voltage-drop dependence of the optical selection rules.
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 3573
-
-
Faist, J.1
Capasso, F.2
Hutchinson, A.3
Pfeiffer, L.4
West, K.5
|