메뉴 건너뛰기




Volumn 128, Issue 1, 1995, Pages 226-244

Infinite kneading matrices and weighted zeta functions of interval maps

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0000807640     PISSN: 00221236     EISSN: 10960783     Source Type: Journal    
DOI: 10.1006/jfan.1995.1029     Document Type: Article
Times cited : (13)

References (14)
  • 1
    • 0001525001 scopus 로고
    • Zeta functions and transfer operators for piecewise monotone transformations
    • V. Baladi and G. Keller, Zeta functions and transfer operators for piecewise monotone transformations, Comm. Math. Phys. 127 (1990), 459-477.
    • (1990) Comm. Math. Phys , vol.127 , pp. 459-477
    • Baladi, V.1    Keller, G.2
  • 2
    • 84958434893 scopus 로고
    • An extension of the theorem of Milnor and Thurston on the zeta functions of interval maps, IHES preprint
    • V. Baladi and D. Ruelle, An extension of the theorem of Milnor and Thurston on the zeta functions of interval maps, IHES preprint, Ergodic Theory Dynamical Systems 14 (1994), 621-632.
    • (1994) Ergodic Theory Dynamical Systems , vol.14 , pp. 621-632
    • Baladi, V.1    Ruelle, D.2
  • 3
    • 85027652155 scopus 로고
    • Some properties of zeta functions associated with maps in one dimension, Appendix to V. Baladi, Dynamical zeta functions and generalised Fredholm determinants
    • Paris, to appear
    • V. Baladi and D. Ruelle, Some properties of zeta functions associated with maps in one dimension, Appendix to V. Baladi, Dynamical zeta functions and generalised Fredholm determinants, in “Proceedings Xlth International Congress of Mathematical Physics, Paris (1994), ” to appear.
    • (1994) Proceedings Xlth International Congress of Mathematical Physics
    • Baladi, V.1    Ruelle, D.2
  • 5
    • 0002392544 scopus 로고
    • Zeta-functions and transfer-operators for piecewise linear transformations
    • F. Hofbauer and G. Keller, Zeta-functions and transfer-operators for piecewise linear transformations, J. Reine Angew. Math. 352 (1984), 100-113.
    • (1984) J. Reine Angew. Math , vol.352 , pp. 100-113
    • Hofbauer, F.1    Keller, G.2
  • 6
    • 0003862232 scopus 로고
    • 2nd ed., 2nd printing, Springer- Verlag, Berlin/Heidelberg/New York
    • T. Kato, "Perturbation Theory for Linear Operators, ” 2nd ed., 2nd printing, Springer- Verlag, Berlin/Heidelberg/New York, 1984.
    • (1984) Perturbation Theory for Linear Operators
    • Kato, T.1
  • 7
    • 0000848698 scopus 로고
    • Iterated maps of the interval
    • (J. C. Alexander, Ed.), Lecture Notes in Mathematics, Springer-Verlag, Berlin/Heidelberg/New York
    • J. Milnor and W. Thurston, Iterated maps of the interval, in “Dynamical Systems (Maryland, 1986-1987)” (J. C. Alexander, Ed.), Lecture Notes in Mathematics, Vol. 1342, Springer-Verlag, Berlin/Heidelberg/New York, 1988.
    • (1988) Dynamical Systems , vol.1342
    • Milnor, J.1    Thurston, W.2
  • 8
    • 84972581002 scopus 로고
    • Fredholm determinant for piecewise linear transformations
    • M. Mori, Fredholm determinant for piecewise linear transformations, Osaka J. Math. 27 (1990), 81-116.
    • (1990) Osaka J. Math , vol.27 , pp. 81-116
    • Mori, M.1
  • 9
    • 84972572105 scopus 로고
    • Fredholm determinant for piecewise monotonic transformations
    • M. Mori, Fredholm determinant for piecewise monotonic transformations, Osaka J. Math. 29 (1992), 497-529.
    • (1992) Osaka J. Math , vol.29 , pp. 497-529
    • Mori, M.1
  • 10
    • 33646978879 scopus 로고
    • Meromorphic extensions of generalised zeta functions
    • M. Pollicott, Meromorphic extensions of generalised zeta functions, Invent. Math. 85 (1986), 147-164.
    • (1986) Invent. Math , vol.85 , pp. 147-164
    • Pollicott, M.1
  • 12
    • 77952678479 scopus 로고
    • Dynamical zeta functions for maps of the interval
    • D. Ruelle, Dynamical zeta functions for maps of the interval, Bull. Amer. Math. Soc. (N.S.) 30 (1994), 212-214.
    • (1994) Bull. Amer. Math. Soc. (N.S.) , vol.30 , pp. 212-214
    • Ruelle, D.1
  • 13
    • 0003314928 scopus 로고
    • Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval
    • Amer. Math. Soc., Providence
    • D. Ruelle, “Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval, ” CRM Monograph Series, Vol. 4, Amer. Math. Soc., Providence, 1994.
    • (1994) CRM Monograph Series , vol.4
    • Ruelle, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.