메뉴 건너뛰기




Volumn 10, Issue 12, 1997, Pages 885-897

Ab initio theoretical study of the reactivity as bases or nucleophiles of potassium and lithium methides

Author keywords

Ab initia studies; Potassium and lithium methods; Reactivity

Indexed keywords


EID: 0000805498     PISSN: 08943230     EISSN: None     Source Type: Journal    
DOI: 10.1002/(SICI)1099-1395(199712)10:12<885::AID-POC955>3.0.CO;2-5     Document Type: Article
Times cited : (3)

References (39)
  • 1
    • 0004174399 scopus 로고
    • Chap. 4. Academic Press, New York
    • (a) Effective substituents are, for instance, second-row elements such as sulfur, carbonyl or cyano groups or other conjugated multiple bonds (Michael-type reactions). Also alkenes with an electron donor group in a suitable position (such as allylic alcohol, see below): equation presented have been reported to undergo readily addition of organolithiums. See: B. J. Wakefield, in Organolithium Methods, Chap. 4. Academic Press, New York (1990); (b) H. E. Podall and W. E. Foster, J. Org. Chem. 23, 1848-1852 (1958); (c) J. K. Crandall and A. J. Rojas, Org. Synth. 55, 1-3 (1976); (d) M. Nakamura, E. Nakamura, N. Koga and K. Morokuma, J. Chem. Soc., Faraday Trans. 90, 1789-1798 (1994); E. Nakamura, M. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 115, 99-106 (1993); E. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 114, 6686-6692 (1992).
    • (1990) Organolithium Methods
    • Wakefield, B.J.1
  • 2
    • 0007141302 scopus 로고
    • (a) Effective substituents are, for instance, second-row elements such as sulfur, carbonyl or cyano groups or other conjugated multiple bonds (Michael-type reactions). Also alkenes with an electron donor group in a suitable position (such as allylic alcohol, see below): equation presented have been reported to undergo readily addition of organolithiums. See: B. J. Wakefield, in Organolithium Methods, Chap. 4. Academic Press, New York (1990); (b) H. E. Podall and W. E. Foster, J. Org. Chem. 23, 1848-1852 (1958); (c) J. K. Crandall and A. J. Rojas, Org. Synth. 55, 1-3 (1976); (d) M. Nakamura, E. Nakamura, N. Koga and K. Morokuma, J. Chem. Soc., Faraday Trans. 90, 1789-1798 (1994); E. Nakamura, M. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 115, 99-106 (1993); E. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 114, 6686-6692 (1992).
    • (1958) J. Org. Chem. , vol.23 , pp. 1848-1852
    • Podall, H.E.1    Foster, W.E.2
  • 3
    • 0343223299 scopus 로고
    • (a) Effective substituents are, for instance, second-row elements such as sulfur, carbonyl or cyano groups or other conjugated multiple bonds (Michael-type reactions). Also alkenes with an electron donor group in a suitable position (such as allylic alcohol, see below): equation presented have been reported to undergo readily addition of organolithiums. See: B. J. Wakefield, in Organolithium Methods, Chap. 4. Academic Press, New York (1990); (b) H. E. Podall and W. E. Foster, J. Org. Chem. 23, 1848-1852 (1958); (c) J. K. Crandall and A. J. Rojas, Org. Synth. 55, 1-3 (1976); (d) M. Nakamura, E. Nakamura, N. Koga and K. Morokuma, J. Chem. Soc., Faraday Trans. 90, 1789-1798 (1994); E. Nakamura, M. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 115, 99-106 (1993); E. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 114, 6686-6692 (1992).
    • (1976) Org. Synth. , vol.55 , pp. 1-3
    • Crandall, J.K.1    Rojas, A.J.2
  • 4
    • 37049066668 scopus 로고
    • (a) Effective substituents are, for instance, second-row elements such as sulfur, carbonyl or cyano groups or other conjugated multiple bonds (Michael-type reactions). Also alkenes with an electron donor group in a suitable position (such as allylic alcohol, see below): equation presented have been reported to undergo readily addition of organolithiums. See: B. J. Wakefield, in Organolithium Methods, Chap. 4. Academic Press, New York (1990); (b) H. E. Podall and W. E. Foster, J. Org. Chem. 23, 1848-1852 (1958); (c) J. K. Crandall and A. J. Rojas, Org. Synth. 55, 1-3 (1976); (d) M. Nakamura, E. Nakamura, N. Koga and K. Morokuma, J. Chem. Soc., Faraday Trans. 90, 1789-1798 (1994); E. Nakamura, M. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 115, 99-106 (1993); E. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 114, 6686-6692 (1992).
    • (1994) J. Chem. Soc., Faraday Trans. , vol.90 , pp. 1789-1798
    • Nakamura, M.1    Nakamura, E.2    Koga, N.3    Morokuma, K.4
  • 5
    • 0002112364 scopus 로고
    • (a) Effective substituents are, for instance, second-row elements such as sulfur, carbonyl or cyano groups or other conjugated multiple bonds (Michael-type reactions). Also alkenes with an electron donor group in a suitable position (such as allylic alcohol, see below): equation presented have been reported to undergo readily addition of organolithiums. See: B. J. Wakefield, in Organolithium Methods, Chap. 4. Academic Press, New York (1990); (b) H. E. Podall and W. E. Foster, J. Org. Chem. 23, 1848-1852 (1958); (c) J. K. Crandall and A. J. Rojas, Org. Synth. 55, 1-3 (1976); (d) M. Nakamura, E. Nakamura, N. Koga and K. Morokuma, J. Chem. Soc., Faraday Trans. 90, 1789-1798 (1994); E. Nakamura, M. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 115, 99-106 (1993); E. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 114, 6686-6692 (1992).
    • (1993) J. Am. Chem. Soc. , vol.115 , pp. 99-106
    • Nakamura, E.1    Nakamura, M.2    Miyachi, Y.3    Koga, N.4    Morokuma, K.5
  • 6
    • 0000439030 scopus 로고
    • (a) Effective substituents are, for instance, second-row elements such as sulfur, carbonyl or cyano groups or other conjugated multiple bonds (Michael-type reactions). Also alkenes with an electron donor group in a suitable position (such as allylic alcohol, see below): equation presented have been reported to undergo readily addition of organolithiums. See: B. J. Wakefield, in Organolithium Methods, Chap. 4. Academic Press, New York (1990); (b) H. E. Podall and W. E. Foster, J. Org. Chem. 23, 1848-1852 (1958); (c) J. K. Crandall and A. J. Rojas, Org. Synth. 55, 1-3 (1976); (d) M. Nakamura, E. Nakamura, N. Koga and K. Morokuma, J. Chem. Soc., Faraday Trans. 90, 1789-1798 (1994); E. Nakamura, M. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 115, 99-106 (1993); E. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 114, 6686-6692 (1992).
    • (1992) J. Am. Chem. Soc. , vol.114 , pp. 6686-6692
    • Nakamura, E.1    Miyachi, Y.2    Koga, N.3    Morokuma, K.4
  • 7
    • 0001131842 scopus 로고
    • - distance of ca 3-02 Å, instead of the more usual 2.88-2.89 Å; G. Ghigo, G. Tonachini and P. Venturello, Tetrahedron 52, 7053-7062 (1996).
    • (1992) Mod. Synth. Methods , vol.6 , pp. 227-278
    • Schlosser, M.1
  • 8
    • 0001834816 scopus 로고
    • edited by V. Snieckus, JAI Press, Greenwich, CT
    • - distance of ca 3-02 Å, instead of the more usual 2.88-2.89 Å; G. Ghigo, G. Tonachini and P. Venturello, Tetrahedron 52, 7053-7062 (1996).
    • (1992) Advances in Carbanion Chemistry , vol.1 , pp. 1
    • Mordini, A.1
  • 11
    • 0348216676 scopus 로고
    • A pK of ca 43 is estimated for propene in LiCHA-CHA: D. W. Boerth and A. Streitwieser, Jr, J. Am. Chem. Soc. 103, 6443-6447 (1981); a value ranging from 47 to 48 in THF-HMPA was also estimated: B. Jaun, J. Schwarz and R. Breslow, J. Am. Chem. Soc. 102, 5741-5748 (1980). The pK value for methane was extrapolated from toluene and diphenylmethane: the estimate ranges from 52 to 62 (same reference). For a discussion on the acidity of hydrocarbons see, for instance: F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Chapt. 7. Plenum Press, New York, (1990).
    • (1981) J. Am. Chem. Soc. , vol.103 , pp. 6443-6447
    • Boerth, D.W.1    Streitwieser Jr., A.2
  • 12
    • 0001693103 scopus 로고
    • A pK of ca 43 is estimated for propene in LiCHA-CHA: D. W. Boerth and A. Streitwieser, Jr, J. Am. Chem. Soc. 103, 6443-6447 (1981); a value ranging from 47 to 48 in THF-HMPA was also estimated: B. Jaun, J. Schwarz and R. Breslow, J. Am. Chem. Soc. 102, 5741-5748 (1980). The pK value for methane was extrapolated from toluene and diphenylmethane: the estimate ranges from 52 to 62 (same reference). For a discussion on the acidity of hydrocarbons see, for instance: F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Chapt. 7. Plenum Press, New York, (1990).
    • (1980) J. Am. Chem. Soc. , vol.102 , pp. 5741-5748
    • Jaun, B.1    Schwarz, J.2    Breslow, R.3
  • 13
    • 0348216676 scopus 로고
    • Chapt. 7. Plenum Press, New York
    • A pK of ca 43 is estimated for propene in LiCHA-CHA: D. W. Boerth and A. Streitwieser, Jr, J. Am. Chem. Soc. 103, 6443-6447 (1981); a value ranging from 47 to 48 in THF-HMPA was also estimated: B. Jaun, J. Schwarz and R. Breslow, J. Am. Chem. Soc. 102, 5741-5748 (1980). The pK value for methane was extrapolated from toluene and diphenylmethane: the estimate ranges from 52 to 62 (same reference). For a discussion on the acidity of hydrocarbons see, for instance: F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Chapt. 7. Plenum Press, New York, (1990).
    • (1990) Advanced Organic Chemistry
    • Carey, F.A.1    Sundberg, R.J.2
  • 14
    • 0001605768 scopus 로고
    • For the oligomerìzation of alkyllithiums, see: E. Kaufmann, J. Gose and P. v. R. Schleyer, Organometallics 8, 2577-2584 (1989); E. Kaufmann, K. Raghavachari, A. E. Reed and P. v. R. Schleyer, Organometallics 7, 1597-1607 (1988), and references cited therein. Here MeLi is just considered as a simple model for a generic alkyl group, and aggregation problems are plainly neglected. Not all alkyllithium have a strong inclination to aggregate: bulky t-BuLi. for instance, has been shown to exist as a monomer in tetrahydrofuran: W. Bauer, W. R. Winchester and P. v. R. Schleyer, Organometallics 6, 2371-2379 (1987). Theoretical studies carried out in this laboratory indicate that changing the structure of the anionic moiety by introduction of heteroatoms (Y) significantly affects the anion - cation interactions which determine the tendency to give aggregates; see, for Y=F, C. Canepa, P. Antoniotti and G. Tonachini, Tetrahedron 50, 8073-8084 (1994), and, for Y=Cl, C. Canepa and G. Tonachini, Tetrahedron 50, 12511-12520 (1994).
    • (1989) Organometallics , vol.8 , pp. 2577-2584
    • Kaufmann, E.1    Gose, J.2    Schleyer, P.V.R.3
  • 15
    • 0000065730 scopus 로고
    • and references cited therein
    • For the oligomerìzation of alkyllithiums, see: E. Kaufmann, J. Gose and P. v. R. Schleyer, Organometallics 8, 2577-2584 (1989); E. Kaufmann, K. Raghavachari, A. E. Reed and P. v. R. Schleyer, Organometallics 7, 1597-1607 (1988), and references cited therein. Here MeLi is just considered as a simple model for a generic alkyl group, and aggregation problems are plainly neglected. Not all alkyllithium have a strong inclination to aggregate: bulky t-BuLi. for instance, has been shown to exist as a monomer in tetrahydrofuran: W. Bauer, W. R. Winchester and P. v. R. Schleyer, Organometallics 6, 2371-2379 (1987). Theoretical studies carried out in this laboratory indicate that changing the structure of the anionic moiety by introduction of heteroatoms (Y) significantly affects the anion - cation interactions which determine the tendency to give aggregates; see, for Y=F, C. Canepa, P. Antoniotti and G. Tonachini, Tetrahedron 50, 8073-8084 (1994), and, for Y=Cl, C. Canepa and G. Tonachini, Tetrahedron 50, 12511-12520 (1994).
    • (1988) Organometallics , vol.7 , pp. 1597-1607
    • Kaufmann, E.1    Raghavachari, K.2    Reed, A.E.3    Schleyer, P.V.R.4
  • 16
    • 0001734638 scopus 로고
    • For the oligomerìzation of alkyllithiums, see: E. Kaufmann, J. Gose and P. v. R. Schleyer, Organometallics 8, 2577-2584 (1989); E. Kaufmann, K. Raghavachari, A. E. Reed and P. v. R. Schleyer, Organometallics 7, 1597-1607 (1988), and references cited therein. Here MeLi is just considered as a simple model for a generic alkyl group, and aggregation problems are plainly neglected. Not all alkyllithium have a strong inclination to aggregate: bulky t-BuLi. for instance, has been shown to exist as a monomer in tetrahydrofuran: W. Bauer, W. R. Winchester and P. v. R. Schleyer, Organometallics 6, 2371-2379 (1987). Theoretical studies carried out in this laboratory indicate that changing the structure of the anionic moiety by introduction of heteroatoms (Y) significantly affects the anion - cation interactions which determine the tendency to give aggregates; see, for Y=F, C. Canepa, P. Antoniotti and G. Tonachini, Tetrahedron 50, 8073-8084 (1994), and, for Y=Cl, C. Canepa and G. Tonachini, Tetrahedron 50, 12511-12520 (1994).
    • (1987) Organometallics , vol.6 , pp. 2371-2379
    • Bauer, W.1    Winchester, W.R.2    Schleyer, P.V.R.3
  • 17
    • 0028237317 scopus 로고
    • For the oligomerìzation of alkyllithiums, see: E. Kaufmann, J. Gose and P. v. R. Schleyer, Organometallics 8, 2577-2584 (1989); E. Kaufmann, K. Raghavachari, A. E. Reed and P. v. R. Schleyer, Organometallics 7, 1597-1607 (1988), and references cited therein. Here MeLi is just considered as a simple model for a generic alkyl group, and aggregation problems are plainly neglected. Not all alkyllithium have a strong inclination to aggregate: bulky t-BuLi. for instance, has been shown to exist as a monomer in tetrahydrofuran: W. Bauer, W. R. Winchester and P. v. R. Schleyer, Organometallics 6, 2371-2379 (1987). Theoretical studies carried out in this laboratory indicate that changing the structure of the anionic moiety by introduction of heteroatoms (Y) significantly affects the anion - cation interactions which determine the tendency to give aggregates; see, for Y=F, C. Canepa, P. Antoniotti and G. Tonachini, Tetrahedron 50, 8073-8084 (1994), and, for Y=Cl, C. Canepa and G. Tonachini, Tetrahedron 50, 12511-12520 (1994).
    • (1994) Tetrahedron , vol.50 , pp. 8073-8084
    • Canepa, C.1    Antoniotti, P.2    Tonachini, G.3
  • 18
    • 0028046839 scopus 로고
    • For the oligomerìzation of alkyllithiums, see: E. Kaufmann, J. Gose and P. v. R. Schleyer, Organometallics 8, 2577-2584 (1989); E. Kaufmann, K. Raghavachari, A. E. Reed and P. v. R. Schleyer, Organometallics 7, 1597-1607 (1988), and references cited therein. Here MeLi is just considered as a simple model for a generic alkyl group, and aggregation problems are plainly neglected. Not all alkyllithium have a strong inclination to aggregate: bulky t-BuLi. for instance, has been shown to exist as a monomer in tetrahydrofuran: W. Bauer, W. R. Winchester and P. v. R. Schleyer, Organometallics 6, 2371-2379 (1987). Theoretical studies carried out in this laboratory indicate that changing the structure of the anionic moiety by introduction of heteroatoms (Y) significantly affects the anion - cation interactions which determine the tendency to give aggregates; see, for Y=F, C. Canepa, P. Antoniotti and G. Tonachini, Tetrahedron 50, 8073-8084 (1994), and, for Y=Cl, C. Canepa and G. Tonachini, Tetrahedron 50, 12511-12520 (1994).
    • (1994) Tetrahedron , vol.50 , pp. 12511-12520
    • Canepa, C.1    Tonachini, G.2
  • 19
    • 84988077127 scopus 로고
    • 2, OH, F) were also considered. A related study was carried out on the reaction of LiH with methane and acetylene (whose hydrogens exhibit a very different acidity); these reactions were found to proceed through four center transition structures, with very different activation barriers: E. Kaufmann, S. Sieber and P. v. R. Schleyer, J. Am. Chem. Soc. 111, 121-125 (1989).
    • (1989) J. Comput. Chem. , vol.10 , pp. 437-448
    • Kaufmann, E.1    Schleyer, P.V.R.2
  • 20
    • 0000251485 scopus 로고
    • 2, OH, F) were also considered. A related study was carried out on the reaction of LiH with methane and acetylene (whose hydrogens exhibit a very different acidity); these reactions were found to proceed through four center transition structures, with very different activation barriers: E. Kaufmann, S. Sieber and P. v. R. Schleyer, J. Am. Chem. Soc. 111, 121-125 (1989).
    • (1989) J. Am. Chem. Soc. , vol.111 , pp. 121-125
    • Kaufmann, E.1    Sieber, S.2    Schleyer, P.V.R.3
  • 22
    • 0002929062 scopus 로고
    • edited by I. G. Csizsmadia and R. Daudel, Reidel, Dordrecht
    • H. B. Schlegel, in Computational Theoretical Organic Chemistry, edited by I. G. Csizsmadia and R. Daudel, p. 129. Reidel, Dordrecht (1981); H. B. Schlegel, J. Chem. Phys. 77, 3676-3681 (1982); H. B. Schlegel, J. S. Binkley and J. A. Pople, J. Chem. Phys. 80, 1976-1981 (1984); H. B. Schlegel, J. Comput. Chem. 3, 214-218 (1982).
    • (1981) Computational Theoretical Organic Chemistry , pp. 129
    • Schlegel, H.B.1
  • 23
    • 36749111412 scopus 로고
    • H. B. Schlegel, in Computational Theoretical Organic Chemistry, edited by I. G. Csizsmadia and R. Daudel, p. 129. Reidel, Dordrecht (1981); H. B. Schlegel, J. Chem. Phys. 77, 3676-3681 (1982); H. B. Schlegel, J. S. Binkley and J. A. Pople, J. Chem. Phys. 80, 1976-1981 (1984); H. B. Schlegel, J. Comput. Chem. 3, 214-218 (1982).
    • (1982) J. Chem. Phys. , vol.77 , pp. 3676-3681
    • Schlegel, H.B.1
  • 24
    • 36549098657 scopus 로고
    • H. B. Schlegel, in Computational Theoretical Organic Chemistry, edited by I. G. Csizsmadia and R. Daudel, p. 129. Reidel, Dordrecht (1981); H. B. Schlegel, J. Chem. Phys. 77, 3676-3681 (1982); H. B. Schlegel, J. S. Binkley and J. A. Pople, J. Chem. Phys. 80, 1976-1981 (1984); H. B. Schlegel, J. Comput. Chem. 3, 214-218 (1982).
    • (1984) J. Chem. Phys. , vol.80 , pp. 1976-1981
    • Schlegel, H.B.1    Binkley, J.S.2    Pople, J.A.3
  • 25
    • 84986439201 scopus 로고
    • H. B. Schlegel, in Computational Theoretical Organic Chemistry, edited by I. G. Csizsmadia and R. Daudel, p. 129. Reidel, Dordrecht (1981); H. B. Schlegel, J. Chem. Phys. 77, 3676-3681 (1982); H. B. Schlegel, J. S. Binkley and J. A. Pople, J. Chem. Phys. 80, 1976-1981 (1984); H. B. Schlegel, J. Comput. Chem. 3, 214-218 (1982).
    • (1982) J. Comput. Chem. , vol.3 , pp. 214-218
    • Schlegel, H.B.1
  • 27
    • 6944251055 scopus 로고
    • (a) C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934); J. S. Binkley and J. A. Pople, Int. J. Quantum Chem. 9, 229-236 (1975); J. A. Pople, J. S. Binkley and R. Seeger, Int. J. Quantum Chem. Symp. 10, -19 (1976); R. Krishnan and J. A. Pople, Int. J. Quantum Chem. 14, 91-100 (1978);
    • (1934) Phys. Rev. , vol.46 , pp. 618
    • Møller, C.1    Plesset, M.S.2
  • 28
    • 84987059635 scopus 로고
    • (a) C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934); J. S. Binkley and J. A. Pople, Int. J. Quantum Chem. 9, 229-236 (1975); J. A. Pople, J. S. Binkley and R. Seeger, Int. J. Quantum Chem. Symp. 10, -19 (1976); R. Krishnan and J. A. Pople, Int. J. Quantum Chem. 14, 91-100 (1978);
    • (1975) Int. J. Quantum Chem. , vol.9 , pp. 229-236
    • Binkley, J.S.1    Pople, J.A.2
  • 29
    • 6944251055 scopus 로고
    • (a) C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934); J. S. Binkley and J. A. Pople, Int. J. Quantum Chem. 9, 229-236 (1975); J. A. Pople, J. S. Binkley and R. Seeger, Int. J. Quantum Chem. Symp. 10, -19 (1976); R. Krishnan and J. A. Pople, Int. J. Quantum Chem. 14, 91-100 (1978);
    • (1976) Int. J. Quantum Chem. Symp. , vol.10 , pp. 19
    • Pople, J.A.1    Binkley, J.S.2    Seeger, R.3
  • 30
    • 84987093700 scopus 로고
    • (a) C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934); J. S. Binkley and J. A. Pople, Int. J. Quantum Chem. 9, 229-236 (1975); J. A. Pople, J. S. Binkley and R. Seeger, Int. J. Quantum Chem. Symp. 10, -19 (1976); R. Krishnan and J. A. Pople, Int. J. Quantum Chem. 14, 91-100 (1978);
    • (1978) Int. J. Quantum Chem. , vol.14 , pp. 91-100
    • Krishnan, R.1    Pople, J.A.2
  • 31
    • 84987097935 scopus 로고
    • (b) J. A. Pople, R. Krishnan, H. B. Schlegel and J. S. Binkley, Int. J. Quantum. Chem. 14, 545-560 (1978); G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910-1918 (1982); G. E. Scuseria, C. L. Janssen and H. F. Schaefer, III, J. Chem. Phys. 89, 7382-7387 (1988); G. E. Scuseria and H. F. Schaefer, III, J. Chem. Phys. 90, 3700-3703 (1989); see also: R. J. Bartlett, Annu. Rev. Phys. Chem. 32, 359-401 ( 1981 ) for a discussion on these two methods and their performances.
    • (1978) Int. J. Quantum. Chem. , vol.14 , pp. 545-560
    • Pople, J.A.1    Krishnan, R.2    Schlegel, H.B.3    Binkley, J.S.4
  • 32
    • 0000122016 scopus 로고
    • (b) J. A. Pople, R. Krishnan, H. B. Schlegel and J. S. Binkley, Int. J. Quantum. Chem. 14, 545-560 (1978); G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910-1918 (1982); G. E. Scuseria, C. L. Janssen and H. F. Schaefer, III, J. Chem. Phys. 89, 7382-7387 (1988); G. E. Scuseria and H. F. Schaefer, III, J. Chem. Phys. 90, 3700-3703 (1989); see also: R. J. Bartlett, Annu. Rev. Phys. Chem. 32, 359-401 ( 1981 ) for a discussion on these two methods and their performances.
    • (1982) J. Chem. Phys. , vol.76 , pp. 1910-1918
    • Purvis, G.D.1    Bartlett, R.J.2
  • 33
    • 36549098398 scopus 로고
    • (b) J. A. Pople, R. Krishnan, H. B. Schlegel and J. S. Binkley, Int. J. Quantum. Chem. 14, 545-560 (1978); G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910-1918 (1982); G. E. Scuseria, C. L. Janssen and H. F. Schaefer, III, J. Chem. Phys. 89, 7382-7387 (1988); G. E. Scuseria and H. F. Schaefer, III, J. Chem. Phys. 90, 3700-3703 (1989); see also: R. J. Bartlett, Annu. Rev. Phys. Chem. 32, 359-401 ( 1981 ) for a discussion on these two methods and their performances.
    • (1988) J. Chem. Phys. , vol.89 , pp. 7382-7387
    • Scuseria, G.E.1    Janssen, C.L.2    Schaefer III, H.F.3
  • 34
    • 36549094556 scopus 로고
    • (b) J. A. Pople, R. Krishnan, H. B. Schlegel and J. S. Binkley, Int. J. Quantum. Chem. 14, 545-560 (1978); G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910-1918 (1982); G. E. Scuseria, C. L. Janssen and H. F. Schaefer, III, J. Chem. Phys. 89, 7382-7387 (1988); G. E. Scuseria and H. F. Schaefer, III, J. Chem. Phys. 90, 3700-3703 (1989); see also: R. J. Bartlett, Annu. Rev. Phys. Chem. 32, 359-401 ( 1981 ) for a discussion on these two methods and their performances.
    • (1989) J. Chem. Phys. , vol.90 , pp. 3700-3703
    • Scuseria, G.E.1    Schaefer III, H.F.2
  • 35
    • 84987097935 scopus 로고
    • (b) J. A. Pople, R. Krishnan, H. B. Schlegel and J. S. Binkley, Int. J. Quantum. Chem. 14, 545-560 (1978); G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910-1918 (1982); G. E. Scuseria, C. L. Janssen and H. F. Schaefer, III, J. Chem. Phys. 89, 7382-7387 (1988); G. E. Scuseria and H. F. Schaefer, III, J. Chem. Phys. 90, 3700-3703 (1989); see also: R. J. Bartlett, Annu. Rev. Phys. Chem. 32, 359-401 ( 1981 ) for a discussion on these two methods and their performances.
    • (1981) Annu. Rev. Phys. Chem. , vol.32 , pp. 359-401
    • Bartlett, R.J.1
  • 37
    • 85033304858 scopus 로고    scopus 로고
    • note
    • (b) the basis consists, for K/C/Li/H, of (13s, 8p/7s, 5p, 1d/7s, 1p/4s) gaussians, respectively. These are grouped as 43321 (s) and 431 (p, the last one acting as a polarization set) for K, 421 (s), 311 (p, the last one a diffuse functions set) and 1 (d, a polarization set) for C, 421 (s) and 1 (p, a polarization set) for Li and 31 (s) for H. This grouping provides a [53/331/31/2] basis set, which is triple-ζ quality in the valence shell.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.