-
1
-
-
0004174399
-
-
Chap. 4. Academic Press, New York
-
(a) Effective substituents are, for instance, second-row elements such as sulfur, carbonyl or cyano groups or other conjugated multiple bonds (Michael-type reactions). Also alkenes with an electron donor group in a suitable position (such as allylic alcohol, see below): equation presented have been reported to undergo readily addition of organolithiums. See: B. J. Wakefield, in Organolithium Methods, Chap. 4. Academic Press, New York (1990); (b) H. E. Podall and W. E. Foster, J. Org. Chem. 23, 1848-1852 (1958); (c) J. K. Crandall and A. J. Rojas, Org. Synth. 55, 1-3 (1976); (d) M. Nakamura, E. Nakamura, N. Koga and K. Morokuma, J. Chem. Soc., Faraday Trans. 90, 1789-1798 (1994); E. Nakamura, M. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 115, 99-106 (1993); E. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 114, 6686-6692 (1992).
-
(1990)
Organolithium Methods
-
-
Wakefield, B.J.1
-
2
-
-
0007141302
-
-
(a) Effective substituents are, for instance, second-row elements such as sulfur, carbonyl or cyano groups or other conjugated multiple bonds (Michael-type reactions). Also alkenes with an electron donor group in a suitable position (such as allylic alcohol, see below): equation presented have been reported to undergo readily addition of organolithiums. See: B. J. Wakefield, in Organolithium Methods, Chap. 4. Academic Press, New York (1990); (b) H. E. Podall and W. E. Foster, J. Org. Chem. 23, 1848-1852 (1958); (c) J. K. Crandall and A. J. Rojas, Org. Synth. 55, 1-3 (1976); (d) M. Nakamura, E. Nakamura, N. Koga and K. Morokuma, J. Chem. Soc., Faraday Trans. 90, 1789-1798 (1994); E. Nakamura, M. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 115, 99-106 (1993); E. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 114, 6686-6692 (1992).
-
(1958)
J. Org. Chem.
, vol.23
, pp. 1848-1852
-
-
Podall, H.E.1
Foster, W.E.2
-
3
-
-
0343223299
-
-
(a) Effective substituents are, for instance, second-row elements such as sulfur, carbonyl or cyano groups or other conjugated multiple bonds (Michael-type reactions). Also alkenes with an electron donor group in a suitable position (such as allylic alcohol, see below): equation presented have been reported to undergo readily addition of organolithiums. See: B. J. Wakefield, in Organolithium Methods, Chap. 4. Academic Press, New York (1990); (b) H. E. Podall and W. E. Foster, J. Org. Chem. 23, 1848-1852 (1958); (c) J. K. Crandall and A. J. Rojas, Org. Synth. 55, 1-3 (1976); (d) M. Nakamura, E. Nakamura, N. Koga and K. Morokuma, J. Chem. Soc., Faraday Trans. 90, 1789-1798 (1994); E. Nakamura, M. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 115, 99-106 (1993); E. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 114, 6686-6692 (1992).
-
(1976)
Org. Synth.
, vol.55
, pp. 1-3
-
-
Crandall, J.K.1
Rojas, A.J.2
-
4
-
-
37049066668
-
-
(a) Effective substituents are, for instance, second-row elements such as sulfur, carbonyl or cyano groups or other conjugated multiple bonds (Michael-type reactions). Also alkenes with an electron donor group in a suitable position (such as allylic alcohol, see below): equation presented have been reported to undergo readily addition of organolithiums. See: B. J. Wakefield, in Organolithium Methods, Chap. 4. Academic Press, New York (1990); (b) H. E. Podall and W. E. Foster, J. Org. Chem. 23, 1848-1852 (1958); (c) J. K. Crandall and A. J. Rojas, Org. Synth. 55, 1-3 (1976); (d) M. Nakamura, E. Nakamura, N. Koga and K. Morokuma, J. Chem. Soc., Faraday Trans. 90, 1789-1798 (1994); E. Nakamura, M. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 115, 99-106 (1993); E. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 114, 6686-6692 (1992).
-
(1994)
J. Chem. Soc., Faraday Trans.
, vol.90
, pp. 1789-1798
-
-
Nakamura, M.1
Nakamura, E.2
Koga, N.3
Morokuma, K.4
-
5
-
-
0002112364
-
-
(a) Effective substituents are, for instance, second-row elements such as sulfur, carbonyl or cyano groups or other conjugated multiple bonds (Michael-type reactions). Also alkenes with an electron donor group in a suitable position (such as allylic alcohol, see below): equation presented have been reported to undergo readily addition of organolithiums. See: B. J. Wakefield, in Organolithium Methods, Chap. 4. Academic Press, New York (1990); (b) H. E. Podall and W. E. Foster, J. Org. Chem. 23, 1848-1852 (1958); (c) J. K. Crandall and A. J. Rojas, Org. Synth. 55, 1-3 (1976); (d) M. Nakamura, E. Nakamura, N. Koga and K. Morokuma, J. Chem. Soc., Faraday Trans. 90, 1789-1798 (1994); E. Nakamura, M. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 115, 99-106 (1993); E. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 114, 6686-6692 (1992).
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 99-106
-
-
Nakamura, E.1
Nakamura, M.2
Miyachi, Y.3
Koga, N.4
Morokuma, K.5
-
6
-
-
0000439030
-
-
(a) Effective substituents are, for instance, second-row elements such as sulfur, carbonyl or cyano groups or other conjugated multiple bonds (Michael-type reactions). Also alkenes with an electron donor group in a suitable position (such as allylic alcohol, see below): equation presented have been reported to undergo readily addition of organolithiums. See: B. J. Wakefield, in Organolithium Methods, Chap. 4. Academic Press, New York (1990); (b) H. E. Podall and W. E. Foster, J. Org. Chem. 23, 1848-1852 (1958); (c) J. K. Crandall and A. J. Rojas, Org. Synth. 55, 1-3 (1976); (d) M. Nakamura, E. Nakamura, N. Koga and K. Morokuma, J. Chem. Soc., Faraday Trans. 90, 1789-1798 (1994); E. Nakamura, M. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 115, 99-106 (1993); E. Nakamura, Y. Miyachi, N. Koga and K. Morokuma, J. Am. Chem. Soc. 114, 6686-6692 (1992).
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 6686-6692
-
-
Nakamura, E.1
Miyachi, Y.2
Koga, N.3
Morokuma, K.4
-
7
-
-
0001131842
-
-
- distance of ca 3-02 Å, instead of the more usual 2.88-2.89 Å; G. Ghigo, G. Tonachini and P. Venturello, Tetrahedron 52, 7053-7062 (1996).
-
(1992)
Mod. Synth. Methods
, vol.6
, pp. 227-278
-
-
Schlosser, M.1
-
8
-
-
0001834816
-
-
edited by V. Snieckus, JAI Press, Greenwich, CT
-
- distance of ca 3-02 Å, instead of the more usual 2.88-2.89 Å; G. Ghigo, G. Tonachini and P. Venturello, Tetrahedron 52, 7053-7062 (1996).
-
(1992)
Advances in Carbanion Chemistry
, vol.1
, pp. 1
-
-
Mordini, A.1
-
9
-
-
84962419790
-
-
- distance of ca 3-02 Å, instead of the more usual 2.88-2.89 Å; G. Ghigo, G. Tonachini and P. Venturello, Tetrahedron 52, 7053-7062 (1996).
-
(1997)
Tetrahedron
, vol.53
, pp. 7937-7946
-
-
Fossey, J.1
Ghigo, G.2
Tonachini, G.3
Venturello, P.4
-
11
-
-
0348216676
-
-
A pK of ca 43 is estimated for propene in LiCHA-CHA: D. W. Boerth and A. Streitwieser, Jr, J. Am. Chem. Soc. 103, 6443-6447 (1981); a value ranging from 47 to 48 in THF-HMPA was also estimated: B. Jaun, J. Schwarz and R. Breslow, J. Am. Chem. Soc. 102, 5741-5748 (1980). The pK value for methane was extrapolated from toluene and diphenylmethane: the estimate ranges from 52 to 62 (same reference). For a discussion on the acidity of hydrocarbons see, for instance: F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Chapt. 7. Plenum Press, New York, (1990).
-
(1981)
J. Am. Chem. Soc.
, vol.103
, pp. 6443-6447
-
-
Boerth, D.W.1
Streitwieser Jr., A.2
-
12
-
-
0001693103
-
-
A pK of ca 43 is estimated for propene in LiCHA-CHA: D. W. Boerth and A. Streitwieser, Jr, J. Am. Chem. Soc. 103, 6443-6447 (1981); a value ranging from 47 to 48 in THF-HMPA was also estimated: B. Jaun, J. Schwarz and R. Breslow, J. Am. Chem. Soc. 102, 5741-5748 (1980). The pK value for methane was extrapolated from toluene and diphenylmethane: the estimate ranges from 52 to 62 (same reference). For a discussion on the acidity of hydrocarbons see, for instance: F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Chapt. 7. Plenum Press, New York, (1990).
-
(1980)
J. Am. Chem. Soc.
, vol.102
, pp. 5741-5748
-
-
Jaun, B.1
Schwarz, J.2
Breslow, R.3
-
13
-
-
0348216676
-
-
Chapt. 7. Plenum Press, New York
-
A pK of ca 43 is estimated for propene in LiCHA-CHA: D. W. Boerth and A. Streitwieser, Jr, J. Am. Chem. Soc. 103, 6443-6447 (1981); a value ranging from 47 to 48 in THF-HMPA was also estimated: B. Jaun, J. Schwarz and R. Breslow, J. Am. Chem. Soc. 102, 5741-5748 (1980). The pK value for methane was extrapolated from toluene and diphenylmethane: the estimate ranges from 52 to 62 (same reference). For a discussion on the acidity of hydrocarbons see, for instance: F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Chapt. 7. Plenum Press, New York, (1990).
-
(1990)
Advanced Organic Chemistry
-
-
Carey, F.A.1
Sundberg, R.J.2
-
14
-
-
0001605768
-
-
For the oligomerìzation of alkyllithiums, see: E. Kaufmann, J. Gose and P. v. R. Schleyer, Organometallics 8, 2577-2584 (1989); E. Kaufmann, K. Raghavachari, A. E. Reed and P. v. R. Schleyer, Organometallics 7, 1597-1607 (1988), and references cited therein. Here MeLi is just considered as a simple model for a generic alkyl group, and aggregation problems are plainly neglected. Not all alkyllithium have a strong inclination to aggregate: bulky t-BuLi. for instance, has been shown to exist as a monomer in tetrahydrofuran: W. Bauer, W. R. Winchester and P. v. R. Schleyer, Organometallics 6, 2371-2379 (1987). Theoretical studies carried out in this laboratory indicate that changing the structure of the anionic moiety by introduction of heteroatoms (Y) significantly affects the anion - cation interactions which determine the tendency to give aggregates; see, for Y=F, C. Canepa, P. Antoniotti and G. Tonachini, Tetrahedron 50, 8073-8084 (1994), and, for Y=Cl, C. Canepa and G. Tonachini, Tetrahedron 50, 12511-12520 (1994).
-
(1989)
Organometallics
, vol.8
, pp. 2577-2584
-
-
Kaufmann, E.1
Gose, J.2
Schleyer, P.V.R.3
-
15
-
-
0000065730
-
-
and references cited therein
-
For the oligomerìzation of alkyllithiums, see: E. Kaufmann, J. Gose and P. v. R. Schleyer, Organometallics 8, 2577-2584 (1989); E. Kaufmann, K. Raghavachari, A. E. Reed and P. v. R. Schleyer, Organometallics 7, 1597-1607 (1988), and references cited therein. Here MeLi is just considered as a simple model for a generic alkyl group, and aggregation problems are plainly neglected. Not all alkyllithium have a strong inclination to aggregate: bulky t-BuLi. for instance, has been shown to exist as a monomer in tetrahydrofuran: W. Bauer, W. R. Winchester and P. v. R. Schleyer, Organometallics 6, 2371-2379 (1987). Theoretical studies carried out in this laboratory indicate that changing the structure of the anionic moiety by introduction of heteroatoms (Y) significantly affects the anion - cation interactions which determine the tendency to give aggregates; see, for Y=F, C. Canepa, P. Antoniotti and G. Tonachini, Tetrahedron 50, 8073-8084 (1994), and, for Y=Cl, C. Canepa and G. Tonachini, Tetrahedron 50, 12511-12520 (1994).
-
(1988)
Organometallics
, vol.7
, pp. 1597-1607
-
-
Kaufmann, E.1
Raghavachari, K.2
Reed, A.E.3
Schleyer, P.V.R.4
-
16
-
-
0001734638
-
-
For the oligomerìzation of alkyllithiums, see: E. Kaufmann, J. Gose and P. v. R. Schleyer, Organometallics 8, 2577-2584 (1989); E. Kaufmann, K. Raghavachari, A. E. Reed and P. v. R. Schleyer, Organometallics 7, 1597-1607 (1988), and references cited therein. Here MeLi is just considered as a simple model for a generic alkyl group, and aggregation problems are plainly neglected. Not all alkyllithium have a strong inclination to aggregate: bulky t-BuLi. for instance, has been shown to exist as a monomer in tetrahydrofuran: W. Bauer, W. R. Winchester and P. v. R. Schleyer, Organometallics 6, 2371-2379 (1987). Theoretical studies carried out in this laboratory indicate that changing the structure of the anionic moiety by introduction of heteroatoms (Y) significantly affects the anion - cation interactions which determine the tendency to give aggregates; see, for Y=F, C. Canepa, P. Antoniotti and G. Tonachini, Tetrahedron 50, 8073-8084 (1994), and, for Y=Cl, C. Canepa and G. Tonachini, Tetrahedron 50, 12511-12520 (1994).
-
(1987)
Organometallics
, vol.6
, pp. 2371-2379
-
-
Bauer, W.1
Winchester, W.R.2
Schleyer, P.V.R.3
-
17
-
-
0028237317
-
-
For the oligomerìzation of alkyllithiums, see: E. Kaufmann, J. Gose and P. v. R. Schleyer, Organometallics 8, 2577-2584 (1989); E. Kaufmann, K. Raghavachari, A. E. Reed and P. v. R. Schleyer, Organometallics 7, 1597-1607 (1988), and references cited therein. Here MeLi is just considered as a simple model for a generic alkyl group, and aggregation problems are plainly neglected. Not all alkyllithium have a strong inclination to aggregate: bulky t-BuLi. for instance, has been shown to exist as a monomer in tetrahydrofuran: W. Bauer, W. R. Winchester and P. v. R. Schleyer, Organometallics 6, 2371-2379 (1987). Theoretical studies carried out in this laboratory indicate that changing the structure of the anionic moiety by introduction of heteroatoms (Y) significantly affects the anion - cation interactions which determine the tendency to give aggregates; see, for Y=F, C. Canepa, P. Antoniotti and G. Tonachini, Tetrahedron 50, 8073-8084 (1994), and, for Y=Cl, C. Canepa and G. Tonachini, Tetrahedron 50, 12511-12520 (1994).
-
(1994)
Tetrahedron
, vol.50
, pp. 8073-8084
-
-
Canepa, C.1
Antoniotti, P.2
Tonachini, G.3
-
18
-
-
0028046839
-
-
For the oligomerìzation of alkyllithiums, see: E. Kaufmann, J. Gose and P. v. R. Schleyer, Organometallics 8, 2577-2584 (1989); E. Kaufmann, K. Raghavachari, A. E. Reed and P. v. R. Schleyer, Organometallics 7, 1597-1607 (1988), and references cited therein. Here MeLi is just considered as a simple model for a generic alkyl group, and aggregation problems are plainly neglected. Not all alkyllithium have a strong inclination to aggregate: bulky t-BuLi. for instance, has been shown to exist as a monomer in tetrahydrofuran: W. Bauer, W. R. Winchester and P. v. R. Schleyer, Organometallics 6, 2371-2379 (1987). Theoretical studies carried out in this laboratory indicate that changing the structure of the anionic moiety by introduction of heteroatoms (Y) significantly affects the anion - cation interactions which determine the tendency to give aggregates; see, for Y=F, C. Canepa, P. Antoniotti and G. Tonachini, Tetrahedron 50, 8073-8084 (1994), and, for Y=Cl, C. Canepa and G. Tonachini, Tetrahedron 50, 12511-12520 (1994).
-
(1994)
Tetrahedron
, vol.50
, pp. 12511-12520
-
-
Canepa, C.1
Tonachini, G.2
-
19
-
-
84988077127
-
-
2, OH, F) were also considered. A related study was carried out on the reaction of LiH with methane and acetylene (whose hydrogens exhibit a very different acidity); these reactions were found to proceed through four center transition structures, with very different activation barriers: E. Kaufmann, S. Sieber and P. v. R. Schleyer, J. Am. Chem. Soc. 111, 121-125 (1989).
-
(1989)
J. Comput. Chem.
, vol.10
, pp. 437-448
-
-
Kaufmann, E.1
Schleyer, P.V.R.2
-
20
-
-
0000251485
-
-
2, OH, F) were also considered. A related study was carried out on the reaction of LiH with methane and acetylene (whose hydrogens exhibit a very different acidity); these reactions were found to proceed through four center transition structures, with very different activation barriers: E. Kaufmann, S. Sieber and P. v. R. Schleyer, J. Am. Chem. Soc. 111, 121-125 (1989).
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 121-125
-
-
Kaufmann, E.1
Sieber, S.2
Schleyer, P.V.R.3
-
22
-
-
0002929062
-
-
edited by I. G. Csizsmadia and R. Daudel, Reidel, Dordrecht
-
H. B. Schlegel, in Computational Theoretical Organic Chemistry, edited by I. G. Csizsmadia and R. Daudel, p. 129. Reidel, Dordrecht (1981); H. B. Schlegel, J. Chem. Phys. 77, 3676-3681 (1982); H. B. Schlegel, J. S. Binkley and J. A. Pople, J. Chem. Phys. 80, 1976-1981 (1984); H. B. Schlegel, J. Comput. Chem. 3, 214-218 (1982).
-
(1981)
Computational Theoretical Organic Chemistry
, pp. 129
-
-
Schlegel, H.B.1
-
23
-
-
36749111412
-
-
H. B. Schlegel, in Computational Theoretical Organic Chemistry, edited by I. G. Csizsmadia and R. Daudel, p. 129. Reidel, Dordrecht (1981); H. B. Schlegel, J. Chem. Phys. 77, 3676-3681 (1982); H. B. Schlegel, J. S. Binkley and J. A. Pople, J. Chem. Phys. 80, 1976-1981 (1984); H. B. Schlegel, J. Comput. Chem. 3, 214-218 (1982).
-
(1982)
J. Chem. Phys.
, vol.77
, pp. 3676-3681
-
-
Schlegel, H.B.1
-
24
-
-
36549098657
-
-
H. B. Schlegel, in Computational Theoretical Organic Chemistry, edited by I. G. Csizsmadia and R. Daudel, p. 129. Reidel, Dordrecht (1981); H. B. Schlegel, J. Chem. Phys. 77, 3676-3681 (1982); H. B. Schlegel, J. S. Binkley and J. A. Pople, J. Chem. Phys. 80, 1976-1981 (1984); H. B. Schlegel, J. Comput. Chem. 3, 214-218 (1982).
-
(1984)
J. Chem. Phys.
, vol.80
, pp. 1976-1981
-
-
Schlegel, H.B.1
Binkley, J.S.2
Pople, J.A.3
-
25
-
-
84986439201
-
-
H. B. Schlegel, in Computational Theoretical Organic Chemistry, edited by I. G. Csizsmadia and R. Daudel, p. 129. Reidel, Dordrecht (1981); H. B. Schlegel, J. Chem. Phys. 77, 3676-3681 (1982); H. B. Schlegel, J. S. Binkley and J. A. Pople, J. Chem. Phys. 80, 1976-1981 (1984); H. B. Schlegel, J. Comput. Chem. 3, 214-218 (1982).
-
(1982)
J. Comput. Chem.
, vol.3
, pp. 214-218
-
-
Schlegel, H.B.1
-
27
-
-
6944251055
-
-
(a) C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934); J. S. Binkley and J. A. Pople, Int. J. Quantum Chem. 9, 229-236 (1975); J. A. Pople, J. S. Binkley and R. Seeger, Int. J. Quantum Chem. Symp. 10, -19 (1976); R. Krishnan and J. A. Pople, Int. J. Quantum Chem. 14, 91-100 (1978);
-
(1934)
Phys. Rev.
, vol.46
, pp. 618
-
-
Møller, C.1
Plesset, M.S.2
-
28
-
-
84987059635
-
-
(a) C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934); J. S. Binkley and J. A. Pople, Int. J. Quantum Chem. 9, 229-236 (1975); J. A. Pople, J. S. Binkley and R. Seeger, Int. J. Quantum Chem. Symp. 10, -19 (1976); R. Krishnan and J. A. Pople, Int. J. Quantum Chem. 14, 91-100 (1978);
-
(1975)
Int. J. Quantum Chem.
, vol.9
, pp. 229-236
-
-
Binkley, J.S.1
Pople, J.A.2
-
29
-
-
6944251055
-
-
(a) C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934); J. S. Binkley and J. A. Pople, Int. J. Quantum Chem. 9, 229-236 (1975); J. A. Pople, J. S. Binkley and R. Seeger, Int. J. Quantum Chem. Symp. 10, -19 (1976); R. Krishnan and J. A. Pople, Int. J. Quantum Chem. 14, 91-100 (1978);
-
(1976)
Int. J. Quantum Chem. Symp.
, vol.10
, pp. 19
-
-
Pople, J.A.1
Binkley, J.S.2
Seeger, R.3
-
30
-
-
84987093700
-
-
(a) C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934); J. S. Binkley and J. A. Pople, Int. J. Quantum Chem. 9, 229-236 (1975); J. A. Pople, J. S. Binkley and R. Seeger, Int. J. Quantum Chem. Symp. 10, -19 (1976); R. Krishnan and J. A. Pople, Int. J. Quantum Chem. 14, 91-100 (1978);
-
(1978)
Int. J. Quantum Chem.
, vol.14
, pp. 91-100
-
-
Krishnan, R.1
Pople, J.A.2
-
31
-
-
84987097935
-
-
(b) J. A. Pople, R. Krishnan, H. B. Schlegel and J. S. Binkley, Int. J. Quantum. Chem. 14, 545-560 (1978); G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910-1918 (1982); G. E. Scuseria, C. L. Janssen and H. F. Schaefer, III, J. Chem. Phys. 89, 7382-7387 (1988); G. E. Scuseria and H. F. Schaefer, III, J. Chem. Phys. 90, 3700-3703 (1989); see also: R. J. Bartlett, Annu. Rev. Phys. Chem. 32, 359-401 ( 1981 ) for a discussion on these two methods and their performances.
-
(1978)
Int. J. Quantum. Chem.
, vol.14
, pp. 545-560
-
-
Pople, J.A.1
Krishnan, R.2
Schlegel, H.B.3
Binkley, J.S.4
-
32
-
-
0000122016
-
-
(b) J. A. Pople, R. Krishnan, H. B. Schlegel and J. S. Binkley, Int. J. Quantum. Chem. 14, 545-560 (1978); G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910-1918 (1982); G. E. Scuseria, C. L. Janssen and H. F. Schaefer, III, J. Chem. Phys. 89, 7382-7387 (1988); G. E. Scuseria and H. F. Schaefer, III, J. Chem. Phys. 90, 3700-3703 (1989); see also: R. J. Bartlett, Annu. Rev. Phys. Chem. 32, 359-401 ( 1981 ) for a discussion on these two methods and their performances.
-
(1982)
J. Chem. Phys.
, vol.76
, pp. 1910-1918
-
-
Purvis, G.D.1
Bartlett, R.J.2
-
33
-
-
36549098398
-
-
(b) J. A. Pople, R. Krishnan, H. B. Schlegel and J. S. Binkley, Int. J. Quantum. Chem. 14, 545-560 (1978); G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910-1918 (1982); G. E. Scuseria, C. L. Janssen and H. F. Schaefer, III, J. Chem. Phys. 89, 7382-7387 (1988); G. E. Scuseria and H. F. Schaefer, III, J. Chem. Phys. 90, 3700-3703 (1989); see also: R. J. Bartlett, Annu. Rev. Phys. Chem. 32, 359-401 ( 1981 ) for a discussion on these two methods and their performances.
-
(1988)
J. Chem. Phys.
, vol.89
, pp. 7382-7387
-
-
Scuseria, G.E.1
Janssen, C.L.2
Schaefer III, H.F.3
-
34
-
-
36549094556
-
-
(b) J. A. Pople, R. Krishnan, H. B. Schlegel and J. S. Binkley, Int. J. Quantum. Chem. 14, 545-560 (1978); G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910-1918 (1982); G. E. Scuseria, C. L. Janssen and H. F. Schaefer, III, J. Chem. Phys. 89, 7382-7387 (1988); G. E. Scuseria and H. F. Schaefer, III, J. Chem. Phys. 90, 3700-3703 (1989); see also: R. J. Bartlett, Annu. Rev. Phys. Chem. 32, 359-401 ( 1981 ) for a discussion on these two methods and their performances.
-
(1989)
J. Chem. Phys.
, vol.90
, pp. 3700-3703
-
-
Scuseria, G.E.1
Schaefer III, H.F.2
-
35
-
-
84987097935
-
-
(b) J. A. Pople, R. Krishnan, H. B. Schlegel and J. S. Binkley, Int. J. Quantum. Chem. 14, 545-560 (1978); G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910-1918 (1982); G. E. Scuseria, C. L. Janssen and H. F. Schaefer, III, J. Chem. Phys. 89, 7382-7387 (1988); G. E. Scuseria and H. F. Schaefer, III, J. Chem. Phys. 90, 3700-3703 (1989); see also: R. J. Bartlett, Annu. Rev. Phys. Chem. 32, 359-401 ( 1981 ) for a discussion on these two methods and their performances.
-
(1981)
Annu. Rev. Phys. Chem.
, vol.32
, pp. 359-401
-
-
Bartlett, R.J.1
-
36
-
-
0003718315
-
-
Elsevier, Amsterdam
-
(a) S. Huzinaga, J. Andzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakai and H. Tatewaki, in Physical Sciences Data, Vol. 16. Elsevier, Amsterdam (1984);
-
(1984)
Physical Sciences Data
, vol.16
-
-
Huzinaga, S.1
Andzelm, J.2
Klobukowski, M.3
Radzio-Andzelm, E.4
Sakai, Y.5
Tatewaki, H.6
-
37
-
-
85033304858
-
-
note
-
(b) the basis consists, for K/C/Li/H, of (13s, 8p/7s, 5p, 1d/7s, 1p/4s) gaussians, respectively. These are grouped as 43321 (s) and 431 (p, the last one acting as a polarization set) for K, 421 (s), 311 (p, the last one a diffuse functions set) and 1 (d, a polarization set) for C, 421 (s) and 1 (p, a polarization set) for Li and 31 (s) for H. This grouping provides a [53/331/31/2] basis set, which is triple-ζ quality in the valence shell.
-
-
-
-
39
-
-
84902763817
-
-
Gaussian, Pittsburgh, PA
-
M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Ragavachari, J. S. Binkley, C. Gonzales, R. I. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart and J. A. Pople, Gaussian92. Gaussian, Pittsburgh, PA (1992).
-
(1992)
Gaussian92
-
-
Frisch, M.J.1
Trucks, G.W.2
Head-Gordon, M.3
Gill, P.M.W.4
Wong, M.W.5
Foresman, J.B.6
Johnson, B.G.7
Schlegel, H.B.8
Robb, M.A.9
Replogle, E.S.10
Gomperts, R.11
Andres, J.L.12
Ragavachari, K.13
Binkley, J.S.14
Gonzales, C.15
Martin, R.I.16
Fox, D.J.17
Defrees, D.J.18
Baker, J.19
Stewart, J.J.P.20
Pople, J.A.21
more..
|