-
2
-
-
0000228409
-
-
M. Aizenman and E. H. Lieb, J. Stat. Phys. 24, 279 (1981); Y. Chow and F. Y. Wu, Phys. Rev. B 36, 285 (1987).
-
(1987)
Phys. Rev. B
, vol.36
, pp. 285
-
-
Chow, Y.1
Wu, F.Y.2
-
4
-
-
0042492825
-
-
F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982); 55, 315(E) (1983).
-
(1982)
Rev. Mod. Phys.
, vol.54
, pp. 235
-
-
Wu, F.Y.1
-
5
-
-
0042492825
-
-
F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982); 55, 315(E) (1983).
-
(1983)
Rev. Mod. Phys.
, vol.55
-
-
-
6
-
-
0002529522
-
-
Ser. A
-
R. C. Read, J. Comb. Theory, Ser. A 4, 52 (1968); R. C. Read and W. T. Tutte, in Selected Topics in Graph Theory, 3, edited by L. W. Beineke and R. J. Wilson (Academic Press, New York, 1988).
-
(1968)
J. Comb. Theory
, vol.4
, pp. 52
-
-
Read, R.C.1
-
7
-
-
0002529522
-
-
edited by L. W. Beineke and R. J. Wilson Academic Press, New York
-
R. C. Read, J. Comb. Theory, Ser. A 4, 52 (1968); R. C. Read and W. T. Tutte, in Selected Topics in Graph Theory, 3, edited by L. W. Beineke and R. J. Wilson (Academic Press, New York, 1988).
-
(1988)
Selected Topics in Graph Theory, 3
-
-
Read, R.C.1
Tutte, W.T.2
-
8
-
-
4243175202
-
-
The minimum number of colors needed for this coloring of G is called its chromatic number, χ(G)
-
The minimum number of colors needed for this coloring of G is called its chromatic number, χ(G).
-
-
-
-
9
-
-
4243065585
-
-
note
-
s) [7]. As in Ref. [7], we shall use the first order of limits here; this has the advantage of removing certain isolated discontinuities in W.
-
-
-
-
13
-
-
0032047241
-
-
M. Roček, R. Shrock, and S.-H. Tsai, Physica A 252, 505 (1998); 259, 367 (1998).
-
(1998)
Physica A
, vol.252
, pp. 505
-
-
Roček, M.1
Shrock, R.2
Tsai, S.-H.3
-
14
-
-
0032183844
-
-
M. Roček, R. Shrock, and S.-H. Tsai, Physica A 252, 505 (1998); 259, 367 (1998).
-
(1998)
Physica A
, vol.259
, pp. 367
-
-
-
16
-
-
0001679220
-
-
R. Shrock and S.-H. Tsai, Phys. Rev. E 56, 3935 (1997); 56, 4111 (1997).
-
(1997)
Phys. Rev. E
, vol.56
, pp. 4111
-
-
-
19
-
-
0000240640
-
-
e-print cond-mat/9808057
-
R. Shrock and S.-H. Tsai, Phys. Rev. E 58, 4332 (1998); e-print cond-mat/9808057. In the absence of exact solutions, these values of W(Λ,q) are determined by Monte Carlo measurements and large-q series.
-
(1998)
Phys. Rev. E
, vol.58
, pp. 4332
-
-
Shrock, R.1
Tsai, S.-H.2
-
21
-
-
0033101214
-
-
R. Shrock and S.-H. Tsai, Physica A 265, 186 (1999); J. Phys. A 32, L195 (1999).
-
(1999)
J. Phys. A
, vol.32
-
-
-
25
-
-
0001481957
-
-
Ser. B
-
N. L. Biggs, R. M. Damerell, and D. A. Sands, J. Comb. Theory, Ser. B 12, 123 (1972); N. L. Biggs and G. H. Meredith, ibid. 20, 5 (1976).
-
(1972)
J. Comb. Theory
, vol.12
, pp. 123
-
-
Biggs, N.L.1
Damerell, R.M.2
Sands, D.A.3
-
26
-
-
4243154505
-
-
N. L. Biggs, R. M. Damerell, and D. A. Sands, J. Comb. Theory, Ser. B 12, 123 (1972); N. L. Biggs and G. H. Meredith, ibid. 20, 5 (1976).
-
(1976)
J. Comb. Theory
, vol.20
, pp. 5
-
-
Biggs, N.L.1
Meredith, G.H.2
-
27
-
-
0001870053
-
-
Ser. B
-
S. Beraha, J. Kahane, and N. Weiss, J. Comb. Theory, Ser. B 28, 52 (1980).
-
(1980)
J. Comb. Theory
, vol.28
, pp. 52
-
-
Beraha, S.1
Kahane, J.2
Weiss, N.3
-
28
-
-
0001358201
-
-
Wiley, New York
-
R. C. Read and G. F. Royle, in Graph Theory, Combinatorics, and Applications (Wiley, New York, 1991), Vol. 2, p. 1009.
-
(1991)
Graph Theory, Combinatorics, and Applications
, vol.2
, pp. 1009
-
-
Read, R.C.1
Royle, G.F.2
-
29
-
-
4243061010
-
-
note
-
Some families of graphs that do not have regular lattice directions have noncompact loci B that separate the q plane into different regions [11,12,15].
-
-
-
-
30
-
-
85088001633
-
-
note
-
2. Graph families with B not including q=0 are given in [9,11,12,15].
-
-
-
-
31
-
-
85088002715
-
-
note
-
c({G}), one can only determine the magnitude |W({G},q)| unambiguously [7].
-
-
-
|