-
1
-
-
0003851729
-
-
U.S. Government Printing Office, Washington, DC
-
M. ABRAMOWITZ AND I. A. STEGUN, EDS., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, U.S. Government Printing Office, Washington, DC, 1964.
-
(1964)
Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables
-
-
Abramowitz, M.1
Stegun, I.A.2
-
2
-
-
5844297152
-
Theory of reproducing kernels
-
M. ARONSZAJN, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), pp. 337-404.
-
(1950)
Trans. Amer. Math. Soc.
, vol.68
, pp. 337-404
-
-
Aronszajn, M.1
-
3
-
-
84966232258
-
Error bounds for the method of good lattice points
-
S. DISNEY AND I. H. SLOAN, Error bounds for the method of good lattice points, Math. Comp., 56 (1991), pp. 257-266.
-
(1991)
Math. Comp.
, vol.56
, pp. 257-266
-
-
Disney, S.1
Sloan, I.H.2
-
4
-
-
0026841788
-
Lattice integration rules of maximal rank formed by copying rank 1 rules
-
_, Lattice integration rules of maximal rank formed by copying rank 1 rules, SIAM J. Numer. Anal., 29 (1992), pp. 566-577.
-
(1992)
SIAM J. Numer. Anal.
, vol.29
, pp. 566-577
-
-
-
5
-
-
0001368656
-
The jackknife estimate of variance
-
B. EFRON AND C. STEIN, The jackknife estimate of variance, Ann. Statist., 9 (1981), pp. 586-596.
-
(1981)
Ann. Statist.
, vol.9
, pp. 586-596
-
-
Efron, B.1
Stein, C.2
-
7
-
-
0013448247
-
Testing multidimensional integration routines
-
B. Ford, J. C. Rault, and F. Thomasset, eds., North-Holland, Amsterdam
-
A. GENZ, Testing multidimensional integration routines, in Tools, Methods and Languages for Scientific and Engineering Computation, B. Ford, J. C. Rault, and F. Thomasset, eds., North-Holland, Amsterdam, 1984, pp. 81-94.
-
(1984)
Tools, Methods and Languages for Scientific and Engineering Computation
, pp. 81-94
-
-
Genz, A.1
-
8
-
-
0040457640
-
A package for testing multiple integration subroutines
-
P. Keast and G. Fairweather, eds., Dordrecht, the Netherlands, D. Reidel
-
_, A package for testing multiple integration subroutines, in Numerical Integration: Recent Developments, Software and Applications, P. Keast and G. Fairweather, eds., Dordrecht, the Netherlands, D. Reidel, 1987, pp. 337-340.
-
(1987)
Numerical Integration: Recent Developments, Software and Applications
, pp. 337-340
-
-
-
9
-
-
0039044603
-
A comparison of random and quasirandom points for multidimensional quadrature
-
Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, H. Niederreiter and P. J.-S. Shiue, eds., Springer-Verlag, Berlin
-
F. J. HICKERNELL, A comparison of random and quasirandom points for multidimensional quadrature, in Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, H. Niederreiter and P. J.-S. Shiue, eds., Lecture Notes in Statistics, Vol. 106, Springer-Verlag, Berlin, 1995, pp. 213-227.
-
(1995)
Lecture Notes in Statistics
, vol.106
, pp. 213-227
-
-
Hickernell, F.J.1
-
10
-
-
0038285786
-
Zur angenäherten berechnung mehrfacher integrale
-
E. HLAWKA, Zur angenäherten berechnung mehrfacher integrale, Monatsh. Math., 66 (1962), pp. 140-151.
-
(1962)
Monatsh. Math.
, vol.66
, pp. 140-151
-
-
Hlawka, E.1
-
12
-
-
0027576527
-
Intermediate rank lattice rules for multidimensional integration
-
S. JOE AND S. A. R. DISNEY, Intermediate rank lattice rules for multidimensional integration. SIAM J. Numer. Anal., 30 (1993), pp. 569-582.
-
(1993)
SIAM J. Numer. Anal.
, vol.30
, pp. 569-582
-
-
Joe, S.1
Disney, S.A.R.2
-
13
-
-
0026909088
-
Imbedded lattice rules for multidimensional integration
-
S. JOE AND I. H. SLOAN, Imbedded lattice rules for multidimensional integration, SIAM J. Numer. Anal., 29 (1992), pp. 1119-1135.
-
(1992)
SIAM J. Numer. Anal.
, vol.29
, pp. 1119-1135
-
-
Joe, S.1
Sloan, I.H.2
-
14
-
-
0001347330
-
The approximate computation of multiple integrals
-
In Russian
-
N. M. KOROBOV, The approximate computation of multiple integrals. Dokl. Akad. Nauk. UzSSR. 124 (1959), pp. 1207-1210. (In Russian.)
-
(1959)
Dokl. Akad. Nauk. UzSSR
, vol.124
, pp. 1207-1210
-
-
Korobov, N.M.1
-
15
-
-
0001563525
-
Quasi-random sequences and their discrepancies
-
W. J. MOROKOFF AND R. E. CAFLISCH, Quasi-random sequences and their discrepancies. SIAM J. Sci. Comput., 15 (1994), pp. 1251-1279.
-
(1994)
SIAM J. Sci. Comput.
, vol.15
, pp. 1251-1279
-
-
Morokoff, W.J.1
Caflisch, R.E.2
-
17
-
-
84966204166
-
Lattice rules for multiple integration and discrepancy
-
H. NIEDERREITER AND I. H. SLOAN, Lattice rules for multiple integration and discrepancy, Math. Comp., 54 (1990), pp. 303-312.
-
(1990)
Math. Comp.
, vol.54
, pp. 303-312
-
-
Niederreiter, H.1
Sloan, I.H.2
-
18
-
-
0040457620
-
Quasi-Monte Carlo methods with modified vertex weights
-
Birkhäuser, Basel
-
_, Quasi-Monte Carlo methods with modified vertex weights, in Numerical Integration IV, Internat. Series Numerical Math., Vol. 112, Birkhäuser, Basel, 1993, pp. 253-265.
-
(1993)
Numerical Integration IV, Internat. Series Numerical Math.
, vol.112
, pp. 253-265
-
-
-
19
-
-
0028430051
-
Integration of nonperiodic functions of two variables by Fibonacci lattice rules
-
_, Integration of nonperiodic functions of two variables by Fibonacci lattice rules, J. Comput. Appl. Math., 51 (1994). pp. 57-70.
-
(1994)
J. Comput. Appl. Math.
, vol.51
, pp. 57-70
-
-
-
20
-
-
0000444881
-
Orthogonal arrays for computer experiments, integration and visualization
-
A. B. OWEN, Orthogonal arrays for computer experiments, integration and visualization, Statist. Sinica, 2 (1992), pp. 439-452.
-
(1992)
Statist. Sinica
, vol.2
, pp. 439-452
-
-
Owen, A.B.1
-
22
-
-
0004791021
-
Lattice methods for multiple integration
-
I. H. SLOAN, Lattice methods for multiple integration, J. Comput. Appl. Math., 12 & 13 (1985), pp. 131-143.
-
(1985)
J. Comput. Appl. Math.
, vol.12-13
, pp. 131-143
-
-
Sloan, I.H.1
-
23
-
-
0042435988
-
Numerical integration in high dimensions - The lattice rule approach
-
T. O. Espelid and A. Genz, eds., Kluwer Academic Publishers, Dordrecht
-
_, Numerical integration in high dimensions - the lattice rule approach, in Numerical Integration: Recent Developments, Software and Applications, T. O. Espelid and A. Genz, eds., Kluwer Academic Publishers, Dordrecht, 1992, pp. 55-69.
-
(1992)
Numerical Integration: Recent Developments, Software and Applications
, pp. 55-69
-
-
-
25
-
-
0023289278
-
Lattice methods for multiple integration: Theory, error analysis and examples
-
I. H. SLOAN AND P. KACHOYAN, Lattice methods for multiple integration: Theory, error analysis and examples, SIAM J. Numer. Anal., 24 (1987), pp. 116-128.
-
(1987)
SIAM J. Numer. Anal.
, vol.24
, pp. 116-128
-
-
Sloan, I.H.1
Kachoyan, P.2
-
26
-
-
84966216940
-
A computer search of rank-2 lattice rules for multidimensional quadrature
-
I. H. SLOAN AND L. WALSH, A computer search of rank-2 lattice rules for multidimensional quadrature, Math. Comp., 54 (1990), pp. 281-302.
-
(1990)
Math. Comp.
, vol.54
, pp. 281-302
-
-
Sloan, I.H.1
Walsh, L.2
-
27
-
-
0003466536
-
-
Society for Industrial and Applied Mathematics, Philadelphia
-
G. WAHBA, Spline Models for Observational Data, Society for Industrial and Applied Mathematics, Philadelphia, 1990.
-
(1990)
Spline Models for Observational Data
-
-
Wahba, G.1
-
28
-
-
0002239882
-
Computational investigtions of low discrepancy point sets
-
S. K. Zaremba, ed., Academic Press. New York
-
T. T. WARNOCK, Computational investigtions of low discrepancy point sets, in Applications of Number Theory to Numerical Analysis, S. K. Zaremba, ed., Academic Press. New York, 1972, pp. 319-343.
-
(1972)
Applications of Number Theory to Numerical Analysis
, pp. 319-343
-
-
Warnock, T.T.1
|