메뉴 건너뛰기




Volumn 37, Issue 2, 2000, Pages 441-451

Four-genus and unknotting number of positive knots and links

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0000762761     PISSN: 00306126     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (48)

References (16)
  • 2
    • 84968505712 scopus 로고
    • Two-bridge knots with unknotting number one
    • T. Kanenobu and H. Murakami: Two-bridge knots with unknotting number one, Proc. Amer. Math. Soc., 98 (1986), 499-502.
    • (1986) Proc. Amer. Math. Soc. , vol.98 , pp. 499-502
    • Kanenobu, T.1    Murakami, H.2
  • 3
    • 0001859867 scopus 로고
    • Classification of pretzel knots
    • A. Kawauchi: Classification of pretzel knots, Kobe J. Math. 2 (1985), 11-22.
    • (1985) Kobe J. Math. , vol.2 , pp. 11-22
    • Kawauchi, A.1
  • 4
    • 0039722008 scopus 로고
    • Minimal genus Seifert surface for unknotting number 1 knots
    • T. Kobayashi: Minimal genus Seifert surface for unknotting number 1 knots, Kobe J. Math. 6 (1989), 53-62.
    • (1989) Kobe J. Math. , vol.6 , pp. 53-62
    • Kobayashi, T.1
  • 5
    • 84968482115 scopus 로고
    • On a certain numerical invariant of link type
    • K. Murasugi: On a certain numerical invariant of link type, Trans. Amer. Math. Soc. 117 (1965), 285-339.
    • (1965) Trans. Amer. Math. Soc. , vol.117 , pp. 285-339
    • Murasugi, K.1
  • 6
    • 84966244204 scopus 로고
    • On invariant of graphs with application to knot theory
    • K. Murasugi: On invariant of graphs with application to knot theory, Trans. Amer. Math. Soc. 314 (1989), 1-49.
    • (1989) Trans. Amer. Math. Soc. , vol.314 , pp. 1-49
    • Murasugi, K.1
  • 8
    • 0012035141 scopus 로고
    • Positive knots have negative signature
    • J.H. Przytycki: Positive knots have negative signature, Bull. Polish Acad. Sci. Math. 37 (1989), 559-562.
    • (1989) Bull. Polish Acad. Sci. Math. , vol.37 , pp. 559-562
    • Przytycki, J.H.1
  • 10
    • 0000742130 scopus 로고
    • Algebraic function and closed braid
    • L. Rudolph: Algebraic function and closed braid, Topology, 22 (1983), 191-201.
    • (1983) Topology , vol.22 , pp. 191-201
    • Rudolph, L.1
  • 11
    • 51249182290 scopus 로고
    • Braided surface and Seifert ribbons for closed braid
    • L. Rudolph: Braided surface and Seifert ribbons for closed braid, Comment. Math. Helv. 58 (1983), 1-37.
    • (1983) Comment. Math. Helv. , vol.58 , pp. 1-37
    • Rudolph, L.1
  • 12
    • 0001842354 scopus 로고
    • Quasipositivity as an abstraction to sliceness
    • L. Rudolph: Quasipositivity as an abstraction to sliceness, Bull. Amer. Math. Soc. 29 (1993), 51-59.
    • (1993) Bull. Amer. Math. Soc. , vol.29 , pp. 51-59
    • Rudolph, L.1
  • 14
    • 0000371349 scopus 로고    scopus 로고
    • Unknotting numbers of quasipositive knots
    • T. Tanaka: Unknotting numbers of quasipositive knots, Topology Appl. 88(3) (1998), 239-246.
    • (1998) Topology Appl. , vol.88 , Issue.3 , pp. 239-246
    • Tanaka, T.1
  • 15
    • 0010530935 scopus 로고
    • Positive knots have positive Conway polynomials
    • Knot theory and manifolds (Vancouver, B.C.) Springer, Berlin-New York
    • James M. Van Buskirk: Positive knots have positive Conway polynomials, In Knot theory and manifolds(Vancouver, B.C. 1983), Lecture Notes in Math., 1144, 146-159. Springer, Berlin-New York, 1985.
    • (1983) Lecture Notes in Math. , vol.1144 , pp. 146-159
    • Van Buskirk, J.M.1
  • 16
    • 33646743875 scopus 로고
    • The minimal number of Seifert circles equals the braid index of a link
    • S. Yamada: The minimal number of Seifert circles equals the braid index of a link, Invent. Math. 89 (1987), 347-356.
    • (1987) Invent. Math. , vol.89 , pp. 347-356
    • Yamada, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.