-
2
-
-
84968505712
-
Two-bridge knots with unknotting number one
-
T. Kanenobu and H. Murakami: Two-bridge knots with unknotting number one, Proc. Amer. Math. Soc., 98 (1986), 499-502.
-
(1986)
Proc. Amer. Math. Soc.
, vol.98
, pp. 499-502
-
-
Kanenobu, T.1
Murakami, H.2
-
3
-
-
0001859867
-
Classification of pretzel knots
-
A. Kawauchi: Classification of pretzel knots, Kobe J. Math. 2 (1985), 11-22.
-
(1985)
Kobe J. Math.
, vol.2
, pp. 11-22
-
-
Kawauchi, A.1
-
4
-
-
0039722008
-
Minimal genus Seifert surface for unknotting number 1 knots
-
T. Kobayashi: Minimal genus Seifert surface for unknotting number 1 knots, Kobe J. Math. 6 (1989), 53-62.
-
(1989)
Kobe J. Math.
, vol.6
, pp. 53-62
-
-
Kobayashi, T.1
-
5
-
-
84968482115
-
On a certain numerical invariant of link type
-
K. Murasugi: On a certain numerical invariant of link type, Trans. Amer. Math. Soc. 117 (1965), 285-339.
-
(1965)
Trans. Amer. Math. Soc.
, vol.117
, pp. 285-339
-
-
Murasugi, K.1
-
6
-
-
84966244204
-
On invariant of graphs with application to knot theory
-
K. Murasugi: On invariant of graphs with application to knot theory, Trans. Amer. Math. Soc. 314 (1989), 1-49.
-
(1989)
Trans. Amer. Math. Soc.
, vol.314
, pp. 1-49
-
-
Murasugi, K.1
-
8
-
-
0012035141
-
Positive knots have negative signature
-
J.H. Przytycki: Positive knots have negative signature, Bull. Polish Acad. Sci. Math. 37 (1989), 559-562.
-
(1989)
Bull. Polish Acad. Sci. Math.
, vol.37
, pp. 559-562
-
-
Przytycki, J.H.1
-
10
-
-
0000742130
-
Algebraic function and closed braid
-
L. Rudolph: Algebraic function and closed braid, Topology, 22 (1983), 191-201.
-
(1983)
Topology
, vol.22
, pp. 191-201
-
-
Rudolph, L.1
-
11
-
-
51249182290
-
Braided surface and Seifert ribbons for closed braid
-
L. Rudolph: Braided surface and Seifert ribbons for closed braid, Comment. Math. Helv. 58 (1983), 1-37.
-
(1983)
Comment. Math. Helv.
, vol.58
, pp. 1-37
-
-
Rudolph, L.1
-
12
-
-
0001842354
-
Quasipositivity as an abstraction to sliceness
-
L. Rudolph: Quasipositivity as an abstraction to sliceness, Bull. Amer. Math. Soc. 29 (1993), 51-59.
-
(1993)
Bull. Amer. Math. Soc.
, vol.29
, pp. 51-59
-
-
Rudolph, L.1
-
14
-
-
0000371349
-
Unknotting numbers of quasipositive knots
-
T. Tanaka: Unknotting numbers of quasipositive knots, Topology Appl. 88(3) (1998), 239-246.
-
(1998)
Topology Appl.
, vol.88
, Issue.3
, pp. 239-246
-
-
Tanaka, T.1
-
15
-
-
0010530935
-
Positive knots have positive Conway polynomials
-
Knot theory and manifolds (Vancouver, B.C.) Springer, Berlin-New York
-
James M. Van Buskirk: Positive knots have positive Conway polynomials, In Knot theory and manifolds(Vancouver, B.C. 1983), Lecture Notes in Math., 1144, 146-159. Springer, Berlin-New York, 1985.
-
(1983)
Lecture Notes in Math.
, vol.1144
, pp. 146-159
-
-
Van Buskirk, J.M.1
-
16
-
-
33646743875
-
The minimal number of Seifert circles equals the braid index of a link
-
S. Yamada: The minimal number of Seifert circles equals the braid index of a link, Invent. Math. 89 (1987), 347-356.
-
(1987)
Invent. Math.
, vol.89
, pp. 347-356
-
-
Yamada, S.1
|