-
3
-
-
0004190516
-
-
Clarendon, Oxford, For reviews of this work see
-
For reviews of this work see J M. Ziman, Electrons and Phonons (Clarendon, Oxford, 1960).
-
(1960)
Electrons and Phonons
-
-
Ziman, J.M.1
-
9
-
-
18444377017
-
-
Pis’ma Zh. Eksp. Teor. Fiz., 494 (1996)
-
V. I. Ozhogin, A V. Inyushkin, A. Taldenkov, A V. Tikhomirov, G E. Popov, E. Haller, and K. Itoh, Pis’ma Zh. Eksp. Teor. Fiz. 63, 494 (1996) [JETP Lett.63, 490 (1996)];
-
(1996)
JETP Lett.
, vol.63
, pp. 490
-
-
Ozhogin, V.I.1
Inyushkin, A.V.2
Taldenkov, A.3
Tikhomirov, A.V.4
Popov, G.E.5
Haller, E.6
Itoh, K.7
-
10
-
-
0000210808
-
-
M. Asen-Palmer, K. Bartkowski, E. Gmelin, M. Cardona, A P. Zhernov, V I. Ozhogin, A. Taldenkov, K. Itoh, and E E. Haller, Phys. Rev. B56, 9431 (1997).
-
(1997)
Phys. Rev. B
, vol.56
, pp. 9431
-
-
Asen-Palmer, M.1
Bartkowski, K.2
Gmelin, E.3
Cardona, M.4
Zhernov, A.P.5
Ozhogin, V.I.6
Taldenkov, A.7
Itoh, K.8
Haller, E.E.9
-
11
-
-
0012510371
-
-
R. Berman, C L. Bounds, and S J. Rogers, Proc. R. Soc. London, Ser. A289, 66 (1965).
-
(1965)
Proc. R. Soc. London, Ser. A
, vol.289
, pp. 66
-
-
Berman, R.1
Bounds, C.L.2
Rogers, S.J.3
-
12
-
-
35949009947
-
-
T. R. Anthony, W F. Banholzer, J F. Fleischer, L. Wei, P K. Kuo, R L. Thomas, and R W. Pryor, Phys. Rev. B42, 1104 (1990).
-
(1990)
Phys. Rev. B
, vol.42
, pp. 1104
-
-
Anthony, T.R.1
Banholzer, W.F.2
Fleischer, J.F.3
Wei, L.4
Kuo, P.K.5
Thomas, R.L.6
Pryor, R.W.7
-
13
-
-
4243131384
-
-
D. G. Onn, A. Witek, Y Z. Qiu, T R. Anthony, and W F. Banholzer, Phys. Rev. Lett.68, 2806 (1992);
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 2806
-
-
Onn, D.G.1
Witek, A.2
Qiu, Y.Z.3
Anthony, T.R.4
Banholzer, W.F.5
-
14
-
-
0000590038
-
-
J. L. Olson, R O. Pohl, J W. Vandersande, A. Zoltan, T R. Anthony, and W F. Banholzer, Phys. Rev. B47, 14 850 (1993);
-
(1993)
Phys. Rev. B
, vol.47
, pp. 14 850
-
-
Olson, J.L.1
Pohl, R.O.2
Vandersande, J.W.3
Zoltan, A.4
Anthony, T.R.5
Banholzer, W.F.6
-
15
-
-
0001565752
-
-
L. Wei, P K. Kuo, R L. Thomas, T R. Anthony, and W F. Banholzer, Phys. Rev. Lett.70, 3764 (1993);
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 3764
-
-
Wei, L.1
Kuo, P.K.2
Thomas, R.L.3
Anthony, T.R.4
Banholzer, W.F.5
-
16
-
-
0342508553
-
-
K. Belay, Z. Etzel, D G. Onn, and T R. Anthony, J. Appl. Phys.79, 8336 (1996).
-
(1996)
J. Appl. Phys.
, vol.79
, pp. 8336
-
-
Belay, K.1
Etzel, Z.2
Onn, D.G.3
Anthony, T.R.4
-
18
-
-
0011695024
-
-
R. Berman, P T. Nettley, F W. Sheard, A N. Spencer, R W H. Stevenson, and J M. Ziman, Proc. R. Soc. London, Ser. A253, 403 (1959);
-
(1959)
Proc. R. Soc. London, Ser. A
, vol.253
, pp. 403
-
-
Berman, R.1
Nettley, P.T.2
Sheard, F.W.3
Spencer, A.N.4
Stevenson, R.W.H.5
Ziman, J.M.6
-
21
-
-
0000055945
-
-
W. S. Capinski, H J. Maris, E. Bauser, I. Silier, M. Asen-Palmer, T. Ruf, M. Cardona, and E. Gmelin, Appl. Phys. Lett.71, 2109 (1997).
-
(1997)
Appl. Phys. Lett.
, vol.71
, pp. 2109
-
-
Capinski, W.S.1
Maris, H.J.2
Bauser, E.3
Silier, I.4
Asen-Palmer, M.5
Ruf, T.6
Cardona, M.7
Gmelin, E.8
-
22
-
-
85037878943
-
-
Note that in this experiment only one sample of isotopically purified silicon was measured. The conductivity of this sample could be influenced by defects, and so one has to regard the measured conductivity as a lower bound on the conductivity of an ideal crystal
-
Note that in this experiment only one sample of isotopically purified silicon was measured. The conductivity of this sample could be influenced by defects, and so one has to regard the measured conductivity as a lower bound on the conductivity of an ideal crystal.
-
-
-
-
23
-
-
0040008204
-
-
Fiz. Tekh. Poluprovodn., 923 (1996)
-
G. S. Karumidze, I L. Kekelidze, and L A. Shengeliya, Fiz. Tekh. Poluprovodn. 30, 923 (1996) [Semiconductors30, 921 (1996)].
-
(1996)
Semiconductors
, vol.30
, pp. 921
-
-
Karumidze, G.S.1
Kekelidze, I.L.2
Shengeliya, L.A.3
-
27
-
-
0019670695
-
-
Klemens [Int. J. Thermophys.2, 323 (1981)]
-
(1981)
Int. J. Thermophys.
, vol.2
, pp. 323
-
-
-
29
-
-
0000586648
-
-
have performed a detailed numerical calculation of the thermal conductivity of silicon. In their calculation, a realistic model is used for the phonon dispersion, and the Boltzmann equation is solved numerically. Very good agreement is obtained with experimental data for silicon with a natural isotopic abundance. However, the calculation predicts an enhancement of the conductivity in pure silicon, which is much smaller than is observed experimentally (see Ref. At 100 K, for example, the theoretical value for the increase in an isotopically pure sample is around 15%, whereas experiment gives a 250% enhancement. We do not know the reason for this discrepancy
-
M. Omini and A. Sparavigna [Nuovo Cimento D19, 1537 (1997)] have performed a detailed numerical calculation of the thermal conductivity of silicon. In their calculation, a realistic model is used for the phonon dispersion, and the Boltzmann equation is solved numerically. Very good agreement is obtained with experimental data for silicon with a natural isotopic abundance. However, the calculation predicts an enhancement of the conductivity in pure silicon, which is much smaller than is observed experimentally (see Ref. 13). At 100 K, for example, the theoretical value for the increase in an isotopically pure sample is around 15%, whereas experiment gives a 250% enhancement. We do not know the reason for this discrepancy.
-
(1997)
Nuovo Cimento D
, vol.19
, pp. 1537
-
-
Omini, M.1
Sparavigna, A.2
-
32
-
-
85037874984
-
-
G. Leibfried in, edited by S. Flügge (Springer, Berlin, 1955), 7, Pt. 1, p. 309
-
G. Leibfried in Encyclopaedia of Physics, edited by S. Flügge (Springer, Berlin, 1955), Vol. 7, Pt. 1, p. 309.
-
-
-
-
36
-
-
85037920876
-
-
In making the comparison between curves D and E we are interested in the effect of a different weighting of the acoustic modes. This is why we have set the optic-mode contribution at zero
-
In making the comparison between curves D and E we are interested in the effect of a different weighting of the acoustic modes. This is why we have set the optic-mode contribution at zero.
-
-
-
|