-
2
-
-
85034168698
-
-
Chapter 9, pp 297-299
-
(a) Chapter 9, pp 297-299;
-
-
-
-
3
-
-
85034196034
-
-
Chapter 3, pp 48-56; Chapter 9, pp 286-288; Chapter 12, pp 366-368; Chapter 13, pp 387-393
-
(b) Chapter 3, pp 48-56; Chapter 9, pp 286-288; Chapter 12, pp 366-368; Chapter 13, pp 387-393;
-
-
-
-
4
-
-
85034195759
-
-
Chapter 3, pp 51-52.
-
Chapter 3, pp 51-52.
-
-
-
-
5
-
-
33744845785
-
-
Augustine, R. L., Ed. Dekker: New York
-
(a) Augustine, R. L., Ed. Oxidation; Dekker: New York, 1969; Vol. 1, p 259.
-
(1969)
Oxidation
, vol.1
, pp. 259
-
-
-
9
-
-
0001358113
-
-
Krapcho, A. P.; Larson, J. R.; Eldridge, J. M. J. Org. Chem. 1977, 42, 3749.
-
(1977)
J. Org. Chem.
, vol.42
, pp. 3749
-
-
Krapcho, A.P.1
Larson, J.R.2
Eldridge, J.M.3
-
11
-
-
0344466238
-
-
Trahanovsky, W. S., Ed.; Academic Press: New York
-
Lee, D. G.; van der Engh, M. In Oxidation in Organic Chemistry; Trahanovsky, W. S., Ed.; Academic Press: New York, 1973; Part B, p 186.
-
(1973)
Oxidation in Organic Chemistry
, Issue.PART B
, pp. 186
-
-
Lee, D.G.1
Van Der Engh, M.2
-
12
-
-
85034200701
-
-
U.S. Patent 3,409,649, 1968 to Ethyl Corp.
-
(a) Heybs, K. A.; Dubeck, M. U.S. Patent 3,409,649, 1968 to Ethyl Corp.; Chem. Abstr. 1969, 70, 114575.
-
(1969)
Chem. Abstr.
, vol.70
, pp. 114575
-
-
Heybs, K.A.1
Dubeck, M.2
-
13
-
-
37049126257
-
-
(b) Wolfe, S.; Kasan, S. K.; Campbell, J. R. J. Chem. Soc., Chem. Commun. 1970, 1420.
-
(1970)
J. Chem. Soc., Chem. Commun.
, pp. 1420
-
-
Wolfe, S.1
Kasan, S.K.2
Campbell, J.R.3
-
14
-
-
0001530997
-
-
Foglia, T. A.; Barr, P. A.; Malloy, A. J.; Costanzo, M. J. J. Am. Oil Chem. Soc. 1977, 54, 870A.
-
(1977)
J. Am. Oil Chem. Soc.
, vol.54
-
-
Foglia, T.A.1
Barr, P.A.2
Malloy, A.J.3
Costanzo, M.J.4
-
15
-
-
33744870615
-
-
U.S. Patent 3,547,962, 1970 to Continental Oil Co.
-
Starks, C. M.; Washecheck, P. H. U.S. Patent 3,547,962, 1970 to Continental Oil Co.; Chem. Abstr. 1971, 74, 140895.
-
(1971)
Chem. Abstr.
, vol.74
, pp. 140895
-
-
Starks, C.M.1
Washecheck, P.H.2
-
16
-
-
2542433188
-
-
(e) Carlsen, H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936.
-
(1981)
J. Org. Chem.
, vol.46
, pp. 3936
-
-
Carlsen, H.J.1
Katsuki, T.2
Martin, V.S.3
Sharpless, K.B.4
-
17
-
-
0344035116
-
-
Ger. Offen. 2,046,-034, 1971 to Continental Oil Co.
-
(f) Washecheck, P. H. Ger. Offen. 2,046,-034, 1971 to Continental Oil Co.; Chem. Abstr. 1971, 75, 35158.
-
(1971)
Chem. Abstr.
, vol.75
, pp. 35158
-
-
Washecheck, P.H.1
-
18
-
-
85034182551
-
-
Ger. Offen. 2,106,307, 1972 to Degussa
-
(g) Merck, W.; Schreyer, G.; Weigert, W. Ger. Offen. 2,106,307, 1972 to Degussa; Chem. Abstr. 1972, 77, 151485.
-
(1972)
Chem. Abstr.
, vol.77
, pp. 151485
-
-
Merck, W.1
Schreyer, G.2
Weigert, W.3
-
19
-
-
23544470291
-
-
Ger. Offen. 2,201,456,1973 and 2,252,674,1974 to Bayer A.-G.
-
(a) Waidemann, H.; Schwerdtel, W.; Swodenk, W. Ger. Offen. 2,201,456,1973 and 2,252,674,1974 to Bayer A.-G.; Chem. Abstr. 1973, 79, 91679 and
-
(1973)
Chem. Abstr.
, vol.79
, pp. 91679
-
-
Waidemann, H.1
Schwerdtel, W.2
Swodenk, W.3
-
20
-
-
33744857442
-
-
Chem. Abstr. 1974, 81, 25083.
-
(1974)
Chem. Abstr.
, vol.81
, pp. 25083
-
-
-
21
-
-
33744868416
-
-
(b) Nippon Oil Co. Jpn. Kokai Tokkyo Koho 82 95,921, 1982; Chem. Abstr. 1982, 97, 162366.
-
(1982)
Chem. Abstr.
, vol.97
, pp. 162366
-
-
-
22
-
-
33845278848
-
-
Ishii, Y.; Yamawaki, K.; Ura, T.; Yamada, H.; Yoshida, T.; Ogawa, M. J. Org. Chem. 1988, 53, 3587.
-
(1988)
J. Org. Chem.
, vol.53
, pp. 3587
-
-
Ishii, Y.1
Yamawaki, K.2
Ura, T.3
Yamada, H.4
Yoshida, T.5
Ogawa, M.6
-
23
-
-
0001982629
-
-
Oguchi, T.; Ura, T.; Ishii, Y.; Ogawa, M. Chem. Lett. 1989, 857.
-
(1989)
Chem. Lett.
, pp. 857
-
-
Oguchi, T.1
Ura, T.2
Ishii, Y.3
Ogawa, M.4
-
24
-
-
33744865645
-
-
Ger. Offen. 3,027,349,1981 (It. Appl. 24478/79)
-
(a) Venturello, C.; Alneri, E.; Lana, G. Ger. Offen. 3,027,349,1981 (It. Appl. 24478/79); Chem. Abstr. 1981, 95, 42876.
-
(1981)
Chem. Abstr.
, vol.95
, pp. 42876
-
-
Venturello, C.1
Alneri, E.2
Lana, G.3
-
25
-
-
33845552363
-
-
(b) Venturello, C.; Alneri, E.; Ricci, M. J. Org. Chem. 1983, 48, 3831.
-
(1983)
J. Org. Chem.
, vol.48
, pp. 3831
-
-
Venturello, C.1
Alneri, E.2
Ricci, M.3
-
26
-
-
24244435403
-
-
Eur. Pat. Appl. 123,495, 1984 (It. Appl. 20605/83)
-
(a) Venturello, C.; Ricci, M. Eur. Pat. Appl. 123,495, 1984 (It. Appl. 20605/83); Chem. Abstr. 1985, 702, 78375.
-
(1985)
Chem. Abstr.
, vol.702
, pp. 78375
-
-
Venturello, C.1
Ricci, M.2
-
28
-
-
33744856370
-
-
Eur. Pat. Appl. 109,273, 1984 (It. Appl. 24154A/82)
-
Venturello, C.; D'Aloisio, R.; Ricci, M. Eur. Pat. Appl. 109,273, 1984 (It. Appl. 24154A/82); Chem. Abstr. 1984, 707, 191668.
-
(1984)
Chem. Abstr.
, vol.707
, pp. 191668
-
-
Venturello, C.1
D'Aloisio, R.2
Ricci, M.3
-
29
-
-
1642436621
-
-
Venturello, C.; D'Aloisio, R.; Bart, J. C. J.; Ricci, M. J. Mol. Catal. 1985, 32, 107.
-
(1985)
J. Mol. Catal.
, vol.32
, pp. 107
-
-
Venturello, C.1
D'Aloisio, R.2
Bart, J.C.J.3
Ricci, M.4
-
31
-
-
85034188646
-
-
Eur. Pat. Appl. 146,374, 1985 (It. Appl. 24203A/83)
-
Venturello, C.; Gambaro, M. Eur. Pat. Appl. 146,374, 1985 (It. Appl. 24203A/83); Chem. Abstr. 1985, 703, 195855.
-
(1985)
Chem. Abstr.
, vol.703
, pp. 195855
-
-
Venturello, C.1
Gambaro, M.2
-
33
-
-
33744873494
-
-
Eur. Pat. Appl. 232,742, 1987 (It. Appl. 19098A/86)
-
Venturello, C.; Gambaro, M.; Ricci, M. Eur. Pat. Appl. 232,742, 1987 (It. Appl. 19098A/86); Chem. Abstr. 1988, 108, 131028.
-
(1988)
Chem. Abstr.
, vol.108
, pp. 131028
-
-
Venturello, C.1
Gambaro, M.2
Ricci, M.3
-
35
-
-
0346752217
-
-
Eur. Pat. Appl. 122,804,1984 (It. Appl. 20604A/83)
-
Venturello, C.; Ricci, M. Eur. Pat. Appl. 122,804,1984 (It. Appl. 20604A/83); Chem. Abstr. 1985, 702, 95256.
-
(1985)
Chem. Abstr.
, vol.702
, pp. 95256
-
-
Venturello, C.1
Ricci, M.2
-
36
-
-
85034178560
-
-
Oxidation of trisubstituted and internal disubstituted olefins to acids obeys a 1:3 and 1:4 substrate-to-hydrogen peroxide stoichiometry, respectively. The molar ratio required becomes 1:5 with monosubstituted terminal olefins as the coproduced formic acid can be further oxidized to carbon dioxide
-
Oxidation of trisubstituted and internal disubstituted olefins to acids obeys a 1:3 and 1:4 substrate-to-hydrogen peroxide stoichiometry, respectively. The molar ratio required becomes 1:5 with monosubstituted terminal olefins as the coproduced formic acid can be further oxidized to carbon dioxide.
-
-
-
-
37
-
-
85034171452
-
-
note
-
2 (3 mmol) at low conversion (18%, 1 h). Pentanal (7d), which forms in equimolar amounts with pentanoic acid (8d) from the oxidative cleavage of 4d, was found to be present in the reaction mixture in a molar ratio of 1:1.75 to 8d and of at least 20:1 to 5,6-decanedione.
-
-
-
-
38
-
-
0028897501
-
-
(b) Iwahama, T.; Sakaguchi, S.; Nishiyama, Y.; Ishii, Y. Tetrahedron Lett. 1995, 36, 1523:
-
(1995)
Tetrahedron Lett.
, vol.36
, pp. 1523
-
-
Iwahama, T.1
Sakaguchi, S.2
Nishiyama, Y.3
Ishii, Y.4
-
39
-
-
85034190150
-
-
Five to six minutes for dropping hydrogen peroxide should be added (see Experimental Section)
-
Five to six minutes for dropping hydrogen peroxide should be added (see Experimental Section).
-
-
-
-
40
-
-
85034161690
-
-
With the temperature of the injector set at 300 °C (carrier gas, He). At 250 °C, the formation of the aldehyde decreased by more than 50%. This suggested the decomposition of a parent compound occurring in the gas Chromatograph (see ahead in the text)
-
With the temperature of the injector set at 300 °C (carrier gas, He). At 250 °C, the formation of the aldehyde decreased by more than 50%. This suggested the decomposition of a parent compound occurring in the gas Chromatograph (see ahead in the text).
-
-
-
-
41
-
-
85034178276
-
-
The coproduced formic acid was revealed by ionic chromatography of the water phase
-
The coproduced formic acid was revealed by ionic chromatography of the water phase.
-
-
-
-
42
-
-
85034176979
-
-
note
-
9 aldehyde = 1:5).
-
-
-
-
43
-
-
85034171009
-
-
note
-
10) peroxides and ethers. They presumably result from further reaction of, respectively, the β-hydroperoxy alcohols (see ahead in the text) and vic-diols previously formed with the respective starting epoxides.
-
-
-
-
44
-
-
0010525616
-
-
Ogata, Y.; Sawaki, Y.; Shimizu, H. J. Org. Chem. 1978, 43, 1760.
-
(1978)
J. Org. Chem.
, vol.43
, pp. 1760
-
-
Ogata, Y.1
Sawaki, Y.2
Shimizu, H.3
-
45
-
-
85034161106
-
-
Small amounts of vic-diols 3a,b and α-ketols 4IIa,b were also formed
-
Small amounts of vic-diols 3a,b and α-ketols 4IIa,b were also formed.
-
-
-
-
46
-
-
37049133405
-
-
Mattucci, A. M.; Perrotti, E.; Santambrogio, A. J. Chem. Soc., Chem. Commun. 1970, 1198.
-
(1970)
J. Chem. Soc., Chem. Commun.
, pp. 1198
-
-
Mattucci, A.M.1
Perrotti, E.2
Santambrogio, A.3
-
48
-
-
0004801245
-
-
Subramanyam, V.; Brizuela, C. R.; Soloway, A. H. J. Chem. Soc., Chem. Commun. 1976, 508.
-
(1976)
J. Chem. Soc., Chem. Commun.
, pp. 508
-
-
Subramanyam, V.1
Brizuela, C.R.2
Soloway, A.H.3
-
49
-
-
85034189152
-
-
As silyl derivatives, 5Ic and 5IIc eluted together in GC. The presence of the two regioisomers, however, could be detected from the analysis of the GC-mass spectrum (see Experimental Section)
-
As silyl derivatives, 5Ic and 5IIc eluted together in GC. The presence of the two regioisomers, however, could be detected from the analysis of the GC-mass spectrum (see Experimental Section).
-
-
-
-
50
-
-
85034188741
-
-
The found value of the molar ratio (in favor of the 1,2-diol/α-ketol pair) is misleading because of the high reactivity of β-hydroperoxy alcohols 5c,d under the reaction conditions (see section III)
-
The found value of the molar ratio (in favor of the 1,2-diol/α-ketol pair) is misleading because of the high reactivity of β-hydroperoxy alcohols 5c,d under the reaction conditions (see section III).
-
-
-
-
51
-
-
85034193032
-
-
33b
-
33b
-
-
-
-
52
-
-
0345250668
-
-
(b) Abe, Y.; Matsumura, S.; Shibuya, Y. Yukagaku 1979, 28(4), 276.
-
(1979)
Yukagaku
, vol.28
, Issue.4
, pp. 276
-
-
Abe, Y.1
Matsumura, S.2
Shibuya, Y.3
-
53
-
-
85034198090
-
-
A nearly 1:1 regioisomeric mixture of 5-hydroxy-4-decanone (4Ic) and 4-hydroxy-5-decanone (4IIc) was obtained from the epoxide trans-2c, as determined by GC and GC-MS (after silylation with BSTFA). Regioisomer 4Ic eluted first
-
A nearly 1:1 regioisomeric mixture of 5-hydroxy-4-decanone (4Ic) and 4-hydroxy-5-decanone (4IIc) was obtained from the epoxide trans-2c, as determined by GC and GC-MS (after silylation with BSTFA). Regioisomer 4Ic eluted first.
-
-
-
-
54
-
-
85034173588
-
-
note
-
35b As amphiphiles, in the present two-phase system, the former should be regarded as being more suitably oriented than the latter to contact their polar head with the nucleophiles water and hydrogen peroxide. This might contribute to their much faster hydrolysis/perhydrolysis.
-
-
-
-
55
-
-
84982626216
-
-
(b) Bischoff, M.; Zeidler, U.; Baumann, H. Fette, Seifen, Anstrichm. 1977, 79(3), 131.
-
(1977)
Fette, Seifen, Anstrichm.
, vol.79
, Issue.3
, pp. 131
-
-
Bischoff, M.1
Zeidler, U.2
Baumann, H.3
-
56
-
-
0026405054
-
-
Bonchio, M.; Conte, V.; Di Furia, F.; Modena, G. J. Mol. Catal. 1991, 70, 159.
-
(1991)
J. Mol. Catal.
, vol.70
, pp. 159
-
-
Bonchio, M.1
Conte, V.2
Di Furia, F.3
Modena, G.4
-
58
-
-
85034157176
-
-
note
-
2 under the same conditions. This is due to the fact that, starting from 2f, heating of the substrate/catalyst Ia/water mixture prior to addition of hydrogen peroxide according to the procedure adopted (cf. Experimental Section) favors an early hydrolysis of the epoxide.
-
-
-
-
59
-
-
33744881648
-
-
and references therein
-
For a definition of "normal" and "abnormal" product with regard to the direction of ring opening by a nucleophile in unsymmetrical epoxides, see: Parker, R. E.; Isaacs, N. S. Chem. Rev. 1959, 742 and references therein.
-
(1959)
Chem. Rev.
, pp. 742
-
-
Parker, R.E.1
Isaacs, N.S.2
-
60
-
-
33744869946
-
-
and references therein
-
Cope, A. C.; Martin, M. M.; McKervey, M. A. Q. Rev. (London) 1966, 20, 119 and references therein.
-
(1966)
Q. Rev. (London)
, vol.20
, pp. 119
-
-
Cope, A.C.1
Martin, M.M.2
McKervey, M.A.3
-
61
-
-
85034173057
-
-
note
-
In addition to detection as the silyl derivative (for details, see Experimental Section), 6d could also be revealed as such by GC (cold on-column injector), without appreciable decomposition. Its formation during the progress of transformation 5d → 8d was quantitated by GC as the α-ketol, after reduction in situ with triphenylphosphine.
-
-
-
-
63
-
-
33744875310
-
-
(b) Pinkus, A. G.; Haq, M. Z.; Lindberg, J. G. J. Org. Chem. 1970, 35, 2555
-
(1970)
J. Org. Chem.
, vol.35
, pp. 2555
-
-
Pinkus, A.G.1
Haq, M.Z.2
Lindberg, J.G.3
-
67
-
-
85034185703
-
-
47b
-
47b
-
-
-
-
68
-
-
85034171114
-
-
Analogously, under the same conditions the silyl derivative of the secondary α-hydroperoxy ketone 6d was found to gradually convert into the corresponding α-diketone (see Experimental Section)
-
Analogously, under the same conditions the silyl derivative of the secondary α-hydroperoxy ketone 6d was found to gradually convert into the corresponding α-diketone (see Experimental Section).
-
-
-
-
69
-
-
84981812311
-
-
(a) Birkofer, L.; Ritter, A. Angew. Chem., Int. Ed. 1965, 4, 417.
-
(1965)
Angew. Chem., Int. Ed.
, vol.4
, pp. 417
-
-
Birkofer, L.1
Ritter, A.2
-
71
-
-
0001702008
-
-
Furin, G. G.; Vyazankina, O. A.; Gostevsky, B. A.; Vyazankin, N. S. Tetrahedron 1988,44, 2675.
-
(1988)
Tetrahedron
, vol.44
, pp. 2675
-
-
Furin, G.G.1
Vyazankina, O.A.2
Gostevsky, B.A.3
Vyazankin, N.S.4
-
72
-
-
0007060457
-
-
Kozyukov, V. P.; Kozyukov, Vik. P.; Mironov, V. F. Zh. Obshch. Khim. 1982, 52(6), 1386;
-
(1982)
Zh. Obshch. Khim.
, vol.52
, Issue.6
, pp. 1386
-
-
Kozyukov, V.P.1
Kozyukov Vik, P.2
Mironov, V.F.3
-
73
-
-
33744832820
-
-
Chem. Abstr. 1982, 97, 163077.
-
(1982)
Chem. Abstr.
, vol.97
, pp. 163077
-
-
-
75
-
-
0006202468
-
-
(a) Sharp, D. B.; Patton, L. W.; Whitcomb, S. E. J. Am. Chem. Soc. 1951, 73, 5600.
-
(1951)
J. Am. Chem. Soc.
, vol.73
, pp. 5600
-
-
Sharp, D.B.1
Patton, L.W.2
Whitcomb, S.E.3
-
76
-
-
0006250658
-
-
(b) Sharp, D. B.; Whitcomb, S. E.; Patton, L. W.; Moorhead, A. D. J. Am. Chem. Soc. 1952, 74, 1802.
-
(1952)
J. Am. Chem. Soc.
, vol.74
, pp. 1802
-
-
Sharp, D.B.1
Whitcomb, S.E.2
Patton, L.W.3
Moorhead, A.D.4
-
79
-
-
85034166542
-
-
note
-
2. In any case, it speaks for way a" as well. A priori, we cannot exclude, for both 5IIb and 5d, that the found α-ketol may in part arise also from decomposition of the corresponding α-hydroperoxy ketone formed by the alternative way a' (cf. text and Scheme 2 for the case of 5d). However, since (i) the figures considered refer to experiments at low/partial conversion, where the intermediate α-hydroperoxy ketone formed is present to the extent of 78-82%, and (ii) decomposition of the latter leads only to minor amounts of a-ketol (cf. text and Scheme 2 for the case of 6d), the possible contribution of way a' to the formation of the found α-ketol (due to the decomposed α-hydroperoxy ketone) is insignificant.
-
-
-
-
80
-
-
0022384325
-
-
Baader, W. J.; Bohne, C.; Cilento, G.; Dunford, H. B. J. biol. Chem. 1985, 260, 10217.
-
(1985)
J. Biol. Chem.
, vol.260
, pp. 10217
-
-
Baader, W.J.1
Bohne, C.2
Cilento, G.3
Dunford, H.B.4
-
81
-
-
85034192581
-
-
In comparative experiments carried out in the presence of catalyst Ia and water (85 °C, 1 h, under helium), 5IIb was found to decompose only ca. 1.2 times faster than 5Ib
-
In comparative experiments carried out in the presence of catalyst Ia and water (85 °C, 1 h, under helium), 5IIb was found to decompose only ca. 1.2 times faster than 5Ib.
-
-
-
-
82
-
-
0001193047
-
-
Such a behavior is exhibited by coordinating solvents with hydroperoxides, see: Sheldon, R. A.; Van Doorn, J. A.; Schram, C, W. A.; De Jong, A. J. J. Catal. 1973, 31, 438.
-
(1973)
J. Catal.
, vol.31
, pp. 438
-
-
Sheldon, R.A.1
Van Doorn, J.A.2
Schram, C.W.A.3
De Jong, A.J.4
-
84
-
-
0001305922
-
-
(a) Durham, L. J.; Wurster, C. F.; Mosher, H. S. J. Am. Chem. Soc. 1958, 80, 332.
-
(1958)
S. J. Am. Chem. Soc.
, vol.80
, pp. 332
-
-
Durham, L.J.1
Wurster, C.F.2
Mosher, H.3
-
86
-
-
0000308286
-
-
(a) Späth, E.; Pailer, M.; Schmid, M. Chem. Ber. 1941, 74, 1552.
-
(1941)
Chem. Ber.
, vol.74
, pp. 1552
-
-
Späth, E.1
Pailer, M.2
Schmid, M.3
-
87
-
-
84966130555
-
-
Wiley-Interscience: New York, Chapter 1
-
(b) Swern, D. Organic Peroxides; Wiley-Interscience: New York, 1970; Vol. 1, Chapter 1, pp 24-26.
-
(1970)
Organic Peroxides
, vol.1
, pp. 24-26
-
-
Swern, D.1
-
88
-
-
0343174497
-
-
Kolczynski, J. R.; Roth, E. M.; Shanley, E. S. J. Am. Chem. Soc. 1957, 79, 531.
-
(1957)
J. Am. Chem. Soc.
, vol.79
, pp. 531
-
-
Kolczynski, J.R.1
Roth, E.M.2
Shanley, E.S.3
-
90
-
-
85034194985
-
-
In the absence of hydrogen peroxide, no appreciable contribution to the hydrolysis of epoxyalkanes 2a,b by such species was observed
-
In the absence of hydrogen peroxide, no appreciable contribution to the hydrolysis of epoxyalkanes 2a,b by such species was observed.
-
-
-
-
91
-
-
85034163940
-
-
4 (the first one in the same molar amount, the other two in a molar amount 5-fold greater), under identical conditions. This points to the importance of the lipophilic character of the used acid catalyst for a satisfactory oxirane opening under two-phase reaction conditions
-
4 (the first one in the same molar amount, the other two in a molar amount 5-fold greater), under identical conditions. This points to the importance of the lipophilic character of the used acid catalyst for a satisfactory oxirane opening under two-phase reaction conditions.
-
-
-
-
92
-
-
85034166573
-
-
60b
-
60b
-
-
-
-
93
-
-
0001071446
-
-
(b) Prandi, J.; Kagan, H. B,; Mimoun, H. Tetrahedron Lett. 1986, 27, 2617.
-
(1986)
Tetrahedron Lett.
, vol.27
, pp. 2617
-
-
Prandi, J.1
Kagan, H.B.2
Mimoun, H.3
-
94
-
-
0006143314
-
-
Fantucci, P.; Lolli, S.; Venturello, C. J. Catal. 1997, 169, 228.
-
(1997)
J. Catal.
, vol.169
, pp. 228
-
-
Fantucci, P.1
Lolli, S.2
Venturello, C.3
-
95
-
-
33744882684
-
-
(a) Nonsilylated secondary α-hydroperoxy ketones are known to easily form α-diketones by dehydration, see: Bayley, E. J.; Barton, D. H. R.; Elks, J.; Templeton, J. F. J. Chem. Soc. 1962, 1578 and references therein.
-
(1962)
J. Chem. Soc.
, vol.1578
-
-
Bayley, E.J.1
Barton, D.H.R.2
Elks, J.3
Templeton, J.F.4
-
96
-
-
0001799280
-
-
Blau, K., King, G. S., Eds.; Heyden & Son Ltd.: London, Chapter 4
-
(b) Poole, C. F. In Handbook of Derivatives for Chromatography; Blau, K., King, G. S., Eds.; Heyden & Son Ltd.: London, 1978; Chapter 4, pp 160-165.
-
(1978)
Handbook of Derivatives for Chromatography
, pp. 160-165
-
-
Poole, C.F.1
-
97
-
-
0001540220
-
-
(a) Swern, D.; Billen, G. N.; Findley, T. W.; Scanlan, J. T. J. Am. Chem. Soc. 1945, 67, 1786.
-
(1945)
J. Am. Chem. Soc.
, vol.67
, pp. 1786
-
-
Swern, D.1
Billen, G.N.2
Findley, T.W.3
Scanlan, J.T.4
-
102
-
-
33744839314
-
-
Andreev, V. M.; Polyakova, S. G.; Bazhulina, V. I.; Khrustova, Z. S.; Smirnova, V. V. J. Org. Chem. USSR (Engl. Transl.) 1981, 17, 79.
-
(1981)
J. Org. Chem. USSR (Engl. Transl.)
, vol.17
, pp. 79
-
-
Andreev, V.M.1
Polyakova, S.G.2
Bazhulina, V.I.3
Khrustova, Z.S.4
Smirnova, V.V.5
-
103
-
-
33744893613
-
-
Holmquist, H. E.; Marsh, F. D.; Sauer, J. C.; Engelhardt, V. A. J. Am. Chem. Soc. 1959, 81, 3681.
-
(1959)
J. Am. Chem. Soc.
, vol.81
, pp. 3681
-
-
Holmquist, H.E.1
Marsh, F.D.2
Sauer, J.C.3
Engelhardt, V.A.4
-
104
-
-
0008333143
-
-
Cope, A. C.; Fenton, S. W.; Spencer, C. F. J. Am. Chem. Soc. 1952, 74, 5884.
-
(1952)
J. Am. Chem. Soc.
, vol.74
, pp. 5884
-
-
Cope, A.C.1
Fenton, S.W.2
Spencer, C.F.3
-
105
-
-
85034197183
-
-
Due to its syrupy nature, complex la was preferably employed as a dichloromethane solution of known concentration, with the solvent subsequently removed
-
Due to its syrupy nature, complex la was preferably employed as a dichloromethane solution of known concentration, with the solvent subsequently removed.
-
-
-
-
106
-
-
85034164922
-
-
2, and combined with the crystals precipitated from the aqueous layer
-
2, and combined with the crystals precipitated from the aqueous layer.
-
-
-
-
111
-
-
85034164972
-
-
2:substrate molar ratio (5:1) used in these experiments was chosen to simulate the reaction conditions (volume ratio of the organic versus aqueous phase) as close as possible
-
2:substrate molar ratio (5:1) used in these experiments was chosen to simulate the reaction conditions (volume ratio of the organic versus aqueous phase) as close as possible.
-
-
-
-
112
-
-
85034188657
-
-
note
-
2 was omitted.
-
-
-
-
113
-
-
85034167915
-
-
Determined by GC (after silylation) and NMR
-
Determined by GC (after silylation) and NMR.
-
-
-
-
114
-
-
85034190396
-
-
Determined by NMR
-
Determined by NMR.
-
-
-
-
115
-
-
85034159321
-
-
note
-
+), 75 (60), 61 (38).
-
-
-
-
117
-
-
85034187251
-
-
+), 138 (1), 136 (2.5), 123 (52), 121 (65), 106 (63), 105 (100), 77 (58).
-
+), 138 (1), 136 (2.5), 123 (52), 121 (65), 106 (63), 105 (100), 77 (58).
-
-
-
-
118
-
-
85034165682
-
-
Purity was determined after converting 6d into the corresponding α-ketol
-
Purity was determined after converting 6d into the corresponding α-ketol.
-
-
-
-
119
-
-
85034161488
-
-
+).
-
+).
-
-
-
-
120
-
-
85034201816
-
-
note
-
2.
-
-
-
-
121
-
-
0000425890
-
-
(b) Dickey, F. H.; Rust, F.; Vaughan, W. E. J. Am. Chem. Soc. 1949, 71, 1432.
-
(1949)
J. Am. Chem. Soc.
, vol.71
, pp. 1432
-
-
Dickey, F.H.1
Rust, F.2
Vaughan, W.E.3
-
122
-
-
85034201959
-
-
The value of the ratio decidedly in favor of 8d parallels the trend observed in the blank decomposition of 5d (see Experimental Section) and discussed in ref 83a
-
The value of the ratio decidedly in favor of 8d parallels the trend observed in the blank decomposition of 5d (see Experimental Section) and discussed in ref 83a.
-
-
-
-
123
-
-
33744842117
-
-
Wiley-Interscience: New York, Chapter 2
-
For the formation of 1,2,4-trioxanes by the reaction of aldehydes with β-hydroperoxy alcohols in the presence of acids or dehydrating agents, see: (a) Swern, D. Organic Peroxides; Wiley-Interscience: New York, 1970; Vol. 3, Chapter 2, pp 108-110.
-
(1970)
Organic Peroxides
, vol.3
, pp. 108-110
-
-
Swern, D.1
-
125
-
-
85034176808
-
-
Refs 28 and 29
-
Refs 28 and 29.
-
-
-
-
126
-
-
85034163993
-
-
4, 20.6 and 48 mg/L, respectively)
-
4, 20.6 and 48 mg/L, respectively).
-
-
-
-
127
-
-
85034177218
-
-
(87) This value does not include the quota due to the phosphoric acid already contained in hydrogen peroxide itself (cf. ref 86)
-
(87) This value does not include the quota due to the phosphoric acid already contained in hydrogen peroxide itself (cf. ref 86).
-
-
-
-
128
-
-
85034183634
-
-
Through the use of procedure B (85 °C, 30 min) but with water alone in place of aqueous hydrogen peroxide, from cyclohexene and styrene oxides (2e and 2f) the corresponding 1,2-diols were easily obtained in 85-86% yields (GC analysis). In contrast, from epoxyalkanes 2a,b only small or negligible amounts of the respective 1,2-diols were formed under the same conditions
-
Through the use of procedure B (85 °C, 30 min) but with water alone in place of aqueous hydrogen peroxide, from cyclohexene and styrene oxides (2e and 2f) the corresponding 1,2-diols were easily obtained in 85-86% yields (GC analysis). In contrast, from epoxyalkanes 2a,b only small or negligible amounts of the respective 1,2-diols were formed under the same conditions.
-
-
-
-
129
-
-
85034157617
-
-
71
-
71
-
-
-
-
130
-
-
85034159962
-
-
Most of the glutaric and adipic acid formed (about 5% and 1%, respectively) is found in the mother liquor from acid extraction
-
Most of the glutaric and adipic acid formed (about 5% and 1%, respectively) is found in the mother liquor from acid extraction.
-
-
-
-
131
-
-
84987278718
-
-
The GC-mass spectrum (as dimethyl ester) was consistent with published data: Heller, J.; Yogev, A.; Dreiding, A. S. Helv. Chim. Acta 1972, 55, 1003.
-
(1972)
Helv. Chim. Acta
, vol.55
, pp. 1003
-
-
Heller, J.1
Yogev, A.2
Dreiding, A.S.3
|