메뉴 건너뛰기




Volumn 10, Issue 2, 1995, Pages 117-172

Weakly non-linear geometric optics for hyperbolic systems of conservation laws with shock waves

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0000731972     PISSN: 09217134     EISSN: 18758576     Source Type: Journal    
DOI: 10.3233/ASY-1995-10202     Document Type: Article
Times cited : (14)

References (13)
  • 3
    • 0022699272 scopus 로고
    • Resonantly interacting weakly non-linear hyperbolic waves in the presence of shocks: A single space variable in a homogeneous, time independent medium
    • R Cehelsky and R. Rosales, Resonantly interacting weakly non-linear hyperbolic waves in the presence of shocks: A single space variable in a homogeneous, time independent medium, Stud. Appl Math. 74 (1986) 117-138.
    • (1986) Stud. Appl Math. , vol.74 , pp. 117-138
    • Cehelsky, R.1    Rosales, R.2
  • 4
    • 34250110146 scopus 로고
    • The validity of non-linear geometric optics for weak solutions of conservation laws
    • R. DiPema and A. Majda, The validity of non-linear geometric optics for weak solutions of conservation laws, Comm. Math. Phys. 98 (1985) 313-347.
    • (1985) Comm. Math. Phys. , vol.98 , pp. 313-347
    • Dipema, R.1    Majda, A.2
  • 6
    • 0001198693 scopus 로고
    • Justification of resonant one-dimensional non-linear geometric optics
    • J.-L. Joly, G. Metivier, and J. Rauch, Justification of resonant one-dimensional non-linear geometric optics, J. Funct. Anal. 114 (1) (1993) 106-231.
    • (1993) J. Funct. Anal. , vol.114 , Issue.1 , pp. 106-231
    • Joly, J.-L.1    Metivier, G.2    Rauch, J.3
  • 7
    • 0000364772 scopus 로고
    • On hyperbolic partial differential equations
    • P. Hartmann and A. Wintner, On hyperbolic partial differential equations, Amer. J. Math. 74 (1952), 834-864.
    • (1952) Amer. J. Math. , vol.74 , pp. 834-864
    • Hartmann, P.1    Wintner, A.2
  • 8
    • 0003204263 scopus 로고
    • The stability of multi-dimensional shock fronts and The existence of multi-dimensional shock fronts
    • A. Majda, The stability of multi-dimensional shock fronts and The existence of multi-dimensional shock fronts, Mem. Amer. Math. Soc. 275 and 281 (1983).
    • (1983) Mem. Amer. Math. Soc
    • Majda, A.1
  • 9
    • 0041082001 scopus 로고
    • Nonlinear geometric optics for hyperbolic systems of conservation laws
    • C. Dafermos, J.L. Er-icksen, D. Kinderlehrer, M. Slemrod, eds., Springer, New York
    • A. Majda, Nonlinear geometric optics for hyperbolic systems of conservation laws, in: C. Dafermos, J.L. Er-icksen, D. Kinderlehrer, M. Slemrod, eds., Oscillation Theory, Computation, and Methods of Compensated Compactness (Springer, New York, 1986) 115-165.
    • (1986) Oscillation Theory, Computation, and Methods of Compensated Compactness , pp. 115-165
    • Majda, A.1
  • 10
    • 0003309665 scopus 로고
    • Nonlinear geometric optics for hyperbolic mixed problems
    • Contributions en 1’honneur de Jacques-Louis Lions, Gauthier-Villars, Paris
    • A. Majda and M. Artola, Nonlinear geometric optics for hyperbolic mixed problems, in: Analyse Mathematique et Applications, Contributions en 1’honneur de Jacques-Louis Lions (Gauthier-Villars, Paris, 1988) 319-356.
    • (1988) Analyse Mathematique Et Applications , pp. 319-356
    • Majda, A.1    Artola, M.2
  • 11
    • 0021502758 scopus 로고
    • Resonantly interacting weakly non-linear hyperbolic waves I. A single space variable
    • A. Majda and R. Rosales, Resonantly interacting weakly non-linear hyperbolic waves I. A single space variable, Stud. Appl. Math. 71 (1984), 149-179.
    • (1984) Stud. Appl. Math. , vol.71 , pp. 149-179
    • Majda, A.1    Rosales, R.2
  • 12
    • 84967768753 scopus 로고
    • Differentiability of solutions to hyperbolic initial-boundary value problems
    • J. Rauch and F.J. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc. 189 (1974), 303-318.
    • (1974) Trans. Amer. Math. Soc. , vol.189 , pp. 303-318
    • Rauch, J.1    Massey, F.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.