-
1
-
-
0001703522
-
Joins and higher secant varieties
-
B. Ådlaridsvik, Joins and higher secant varieties, Math. Scand. 61 (1987), 213-222.
-
(1987)
Math. Scand.
, vol.61
, pp. 213-222
-
-
Ådlaridsvik, B.1
-
2
-
-
0012091068
-
Varieties with an extremal number of degenerate higher secant varieties
-
_, Varieties with an extremal number of degenerate higher secant varieties, J. Reine Angew. Math. 392(1988), 16-26.
-
(1988)
J. Reine Angew. Math.
, vol.392
, pp. 16-26
-
-
-
3
-
-
0004086829
-
-
Springer-Verlag, New York
-
E. Arbarello, M. Cornalba, P. Griffiths, and J. Harris, Geometry of Algebraic Curves I, Springer-Verlag, New York, 1984.
-
(1984)
Geometry of Algebraic Curves I
-
-
Arbarello, E.1
Cornalba, M.2
Griffiths, P.3
Harris, J.4
-
4
-
-
84963041953
-
Surfaces whose prime sections are hyperelliptic
-
J. Bronowski, Surfaces whose prime sections are hyperelliptic, J. London Math. Soc. 8 (1933), 308-312.
-
(1933)
J. London Math. Soc.
, vol.8
, pp. 308-312
-
-
Bronowski, J.1
-
5
-
-
0000543491
-
Ideals defined by matrices and a certain complex associated with them
-
J. A. Eagon and D. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Roy. Soc. London Ser. A 269 (1962), 188-204.
-
(1962)
Proc. Roy. Soc. London Ser. A
, vol.269
, pp. 188-204
-
-
Eagon, J.A.1
Northcott, D.2
-
6
-
-
0000285638
-
Linear sections of determinantal varieties
-
D. Eisenbud, Linear sections of determinantal varieties, Amer. J. Math. 110 (1988), 541-575.
-
(1988)
Amer. J. Math.
, vol.110
, pp. 541-575
-
-
Eisenbud, D.1
-
7
-
-
0002013149
-
On the superadditivity of secant defects
-
B. Fantechi, On the superadditivity of secant defects, Bull. Soc. Math. France 118 (1990), 85-100.
-
(1990)
Bull. Soc. Math. France
, vol.118
, pp. 85-100
-
-
Fantechi, B.1
-
10
-
-
0001205182
-
On the geometry of a theorem of Riemann
-
G. Kempf, On the geometry of a theorem of Riemann, Ann. of Math. 98 (1973), 178-185.
-
(1973)
Ann. of Math.
, vol.98
, pp. 178-185
-
-
Kempf, G.1
-
11
-
-
0000329234
-
Sulle varietà algebriche per le quali sono di dimensione minore dell'ordinario, senza riempre lo spazio ambiente, una o alcuna delle varietà formata da spazi seganti
-
F. Palatini, Sulle varietà algebriche per le quali sono di dimensione minore dell'ordinario, senza riempre lo spazio ambiente, una o alcuna delle varietà formata da spazi seganti, Atti Accad. Torino Cl. Sci. Fis. Mat. Natur. 44 (1909), 362-375.
-
(1909)
Atti Accad. Torino Cl. Sci. Fis. Mat. Natur.
, vol.44
, pp. 362-375
-
-
Palatini, F.1
-
12
-
-
0000228248
-
h (h+1)-seganti ha dimensione minore dell'ordinario
-
h (h+1)-seganti ha dimensione minore dell'ordinario, Rend. Circ. Mat. Palermo 31 (1911), 392-396.
-
(1911)
Rend. Circ. Mat. Palermo
, vol.31
, pp. 392-396
-
-
Terracini, A.1
-
14
-
-
0012090589
-
Linear systems of hyperplane sections on varieties of low codimension
-
F. L. Zak, Linear systems of hyperplane sections on varieties of low codimension, Functional Anal. Appl. 19 (1985), 165-173.
-
(1985)
Functional Anal. Appl.
, vol.19
, pp. 165-173
-
-
Zak, F.L.1
|