메뉴 건너뛰기




Volumn 127, Issue 2, 1997, Pages 191-200

An isomorphic Dvoretzky's theorem for convex bodies

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0000727804     PISSN: 00393223     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (12)

References (10)
  • 2
    • 0000652912 scopus 로고
    • Absolute and unconditional convergence in normed linear spaces
    • A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 192-197.
    • (1950) Proc. Nat. Acad. Sci. U.S.A. , vol.36 , pp. 192-197
    • Dvoretzky, A.1    Rogers, C.A.2
  • 3
    • 51249179500 scopus 로고
    • Some inequalities for Gaussian processes and applications
    • Y. Gordon, Some inequalities for Gaussian processes and applications, Israel J. Math. 50 (1985), 265-289.
    • (1985) Israel J. Math. , vol.50 , pp. 265-289
    • Gordon, Y.1
  • 4
    • 0011597392 scopus 로고
    • Majorization of gaussian processes and geometric applications
    • _, Majorization of gaussian processes and geometric applications, Probab. Theory Related Fields 91 (1992), 251-267.
    • (1992) Probab. Theory Related Fields , vol.91 , pp. 251-267
  • 6
    • 21944446877 scopus 로고    scopus 로고
    • Gaussian version of a theorem of Milman and Schechtman
    • O. Guédon, Gaussian version of a theorem of Milman and Schechtman, Positivity 1 (1997), 1-5.
    • (1997) Positivity , vol.1 , pp. 1-5
    • Guédon, O.1
  • 8
    • 0040469061 scopus 로고    scopus 로고
    • An "isomorphic" version of Dvoretzky's theorem II
    • to appear
    • _, _, An "isomorphic" version of Dvoretzky's theorem II, Math. Sci. Res. Inst. Publ., to appear.
    • Math. Sci. Res. Inst. Publ.
  • 9
    • 0040469057 scopus 로고    scopus 로고
    • Contact points of convex bodies
    • to appear
    • M. Rudelson, Contact points of convex bodies, Israel J. Math., to appear.
    • Israel J. Math.
    • Rudelson, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.