-
10
-
-
0000202038
-
-
W. Neuhauser, M. Hohenstatt, P. E. Toschek, and H. G. Dehmelt, Phys. Rev. Lett. 41, 233 (1978)
-
(1978)
Phys. Rev. Lett.
, vol.41
, pp. 233
-
-
Neuhauser, W.1
Hohenstatt, M.2
Toschek, P.E.3
Dehmelt, H.G.4
-
12
-
-
0001700641
-
-
F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 62, 403 (1989)
-
(1989)
Phys. Rev. Lett.
, vol.62
, pp. 403
-
-
Diedrich, F.1
Bergquist, J.C.2
Itano, W.M.3
Wineland, D.J.4
-
13
-
-
11744359426
-
-
Phys. Rev. Lett.C. Monroe, D. M. Meekhof, B. E. King, S. R. Jefferts, W. M. Itano, and D. J. Wineland, 75, 4011 (1995).
-
(1995)
, vol.75
, pp. 4011
-
-
Monroe, C.1
Meekhof, D.M.2
King, B.E.3
Jefferts, S.R.4
Itano, W.M.5
Wineland, D.J.6
-
14
-
-
3843151527
-
-
D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 76, 1796 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 1796
-
-
Meekhof, D.M.1
Monroe, C.2
King, B.E.3
Itano, W.M.4
Wineland, D.J.5
-
15
-
-
0342860967
-
-
C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, Science 272, 1131 (1996).
-
(1996)
Science
, vol.272
, pp. 1131
-
-
Monroe, C.1
Meekhof, D.M.2
King, B.E.3
Wineland, D.J.4
-
16
-
-
0001230916
-
-
D. Liebfried, D. M. Meekhof, B. E. King, C. Monroe, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 77, 4281 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 4281
-
-
Liebfried, D.1
Meekhof, D.M.2
King, B.E.3
Monroe, C.4
Itano, W.M.5
Wineland, D.J.6
-
22
-
-
1542783416
-
-
D. J. Wineland, C. Monroe, W. M. Itano, D. Liebfried, B. E. King, and D. M. Meekhof, NIST J. Res. 103, 259 (1998).
-
(1998)
NIST J. Res.
, vol.103
, pp. 259
-
-
Wineland, D.J.1
Monroe, C.2
Itano, W.M.3
Liebfried, D.4
King, B.E.5
Meekhof, D.M.6
-
24
-
-
85037252049
-
-
For (Formula presented) one obtains a zero quantum coupling, where no vibrational quanta are created or annihilated in the motion of the trapped atom. For this case only the excitation-dependent operator function (Formula presented) acts on the motional degree of freedom and leads to phase-shift and dispersive effects; for more details see Ref
-
For (Formula presented) one obtains a zero quantum coupling, where no vibrational quanta are created or annihilated in the motion of the trapped atom. For this case only the excitation-dependent operator function (Formula presented) acts on the motional degree of freedom and leads to phase-shift and dispersive effects; for more details see Ref. 15. We exclude this case here, since we are mainly interested in the particular situation for (Formula presented)
-
-
-
-
25
-
-
85037187871
-
-
Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1965). (a) For the relation between Laguerre polynomials and the confluent hypergeometric function see Chap. 13, Eq. (13.6.9). (b) For the asymptotic expansion of the confluent hypergeometric function, see Chap. 13, Eq. (13.5.14)
-
Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1965). (a) For the relation between Laguerre polynomials and the confluent hypergeometric function see Chap. 13, Eq. (13.6.9). (b) For the asymptotic expansion of the confluent hypergeometric function, see Chap. 13, Eq. (13.5.14).
-
-
-
-
26
-
-
85037201125
-
-
For a more detailed discussion of these phase-locking effects in the case of nonlinear squeezing (Formula presented) cf. Ref
-
For a more detailed discussion of these phase-locking effects in the case of nonlinear squeezing (Formula presented) cf. Ref. 19.
-
-
-
|