-
3
-
-
0040482250
-
-
H. Röder, E. Hahn, H. Brune, J P. Bucher, and K. Kern, Nature (London)366, 141 (1993).
-
(1993)
Nature (London)
, vol.366
, pp. 141
-
-
Röder, H.1
Hahn, E.2
Brune, H.3
Bucher, J.P.4
Kern, K.5
-
4
-
-
11944271811
-
-
L. Bardotti, P. Jensen, A. Hoareau, M. Treilleux, and B. Cabaud, Phys. Rev. Lett.74, 4694 (1995);
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 4694
-
-
Bardotti, L.1
Jensen, P.2
Hoareau, A.3
Treilleux, M.4
Cabaud, B.5
-
5
-
-
0030382048
-
-
L. Bardotti, P. Jensen, A. Hoareau, M. Treilleux, B. Cabaud, A. Perez, and F C S. Aires, Surf. Sci.367, 276 (1996).
-
(1996)
Surf. Sci.
, vol.367
, pp. 276
-
-
Bardotti, L.1
Jensen, P.2
Hoareau, A.3
Treilleux, M.4
Cabaud, B.5
Perez, A.6
Aires, F.C.S.7
-
6
-
-
3943101429
-
-
J M. Wen, S L. Chang, J W. Burnett, J W. Evans, and P A. Thiel, Phys. Rev. Lett.73, 2591 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 2591
-
-
Wen, J.M.1
Chang, S.L.2
Burnett, J.W.3
Evans, J.W.4
Thiel, P.A.5
-
8
-
-
4043180426
-
-
R Q. Hwang, J. Schröder, C. Günther, and R J. Behm, Phys. Rev. Lett.67, 3279 (1991).
-
(1991)
Phys. Rev. Lett.
, vol.67
, pp. 3279
-
-
Hwang, R.Q.1
Schröder, J.2
Günther, C.3
Behm, R.J.4
-
9
-
-
3342973783
-
-
Th. Michely, M. Hohage, M. Bott, and G. Comsa, Phys. Rev. Lett.70, 3943 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 3943
-
-
Michely, T.1
Hohage, M.2
Bott, M.3
Comsa, G.4
-
15
-
-
33750859937
-
-
P. Jensen, A. Barabási, H. Larralde, S. Havlin, and H E. Stanley, Phys. Rev. B50, 15 316 (1994).
-
(1994)
Phys. Rev. B
, vol.50
, pp. 15
-
-
Jensen, P.1
Barabási, A.2
Larralde, H.3
Havlin, S.4
Stanley, H.E.5
-
16
-
-
0000376750
-
-
G X. Ye, Th. Michely, V. Weidenhof, I. Friedrich, and M. Wuttig, Phys. Rev. Lett.81, 622 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 622
-
-
Ye, G.X.1
Michely, T.2
Weidenhof, V.3
Friedrich, I.4
Wuttig, M.5
-
19
-
-
85038962835
-
-
our simulation, all the discs are “deposited” randomly on the nonlattice square, and the overlap of the discs should be avoided. Thus if the surface coverage ρ goes up, the rate of the successful “deposition” drops quickly. Therefore, although the aggregation period decreases when ρ goes beyond 25%, the total simulation period increases dramatically with the surface coverage
-
In our simulation, all the discs are “deposited” randomly on the nonlattice square, and the overlap of the discs should be avoided. Thus if the surface coverage ρ goes up, the rate of the successful “deposition” drops quickly. Therefore, although the aggregation period decreases when ρ goes beyond 25%, the total simulation period increases dramatically with the surface coverage ρ.
-
-
-
|