-
4
-
-
0030829182
-
-
T. W. Nee and R. Zwanzig, J. Chem. Phys. 52, 6353 (1970); M. Maroncelli, ibid. 106, 1545 (1997).
-
(1997)
J. Chem. Phys.
, vol.106
, pp. 1545
-
-
Maroncelli, M.1
-
6
-
-
10244274492
-
-
D. S. Alavi and D. H. Waldeck, J. Chem. Phys. 94, 6196 (1991); D. S. Alavi, R. S. Hartman, and D. H. Waldeck, ibid. 94, 4509 (1991); D. S. Alavi and D. H. Waldeck, J. Phys. Chem. 95, 4848 (1991); R. S. Hartman, D. S. Alavi, and D. H. Waldeck, ibid. 95, 7872 (1991).
-
(1991)
J. Chem. Phys.
, vol.94
, pp. 6196
-
-
Alavi, D.S.1
Waldeck, D.H.2
-
7
-
-
36449002675
-
-
D. S. Alavi and D. H. Waldeck, J. Chem. Phys. 94, 6196 (1991); D. S. Alavi, R. S. Hartman, and D. H. Waldeck, ibid. 94, 4509 (1991); D. S. Alavi and D. H. Waldeck, J. Phys. Chem. 95, 4848 (1991); R. S. Hartman, D. S. Alavi, and D. H. Waldeck, ibid. 95, 7872 (1991).
-
(1991)
J. Chem. Phys.
, vol.94
, pp. 4509
-
-
Alavi, D.S.1
Hartman, R.S.2
Waldeck, D.H.3
-
8
-
-
0000500611
-
-
D. S. Alavi and D. H. Waldeck, J. Chem. Phys. 94, 6196 (1991); D. S. Alavi, R. S. Hartman, and D. H. Waldeck, ibid. 94, 4509 (1991); D. S. Alavi and D. H. Waldeck, J. Phys. Chem. 95, 4848 (1991); R. S. Hartman, D. S. Alavi, and D. H. Waldeck, ibid. 95, 7872 (1991).
-
(1991)
J. Phys. Chem.
, vol.95
, pp. 4848
-
-
Alavi, D.S.1
Waldeck, D.H.2
-
9
-
-
0001479785
-
-
D. S. Alavi and D. H. Waldeck, J. Chem. Phys. 94, 6196 (1991); D. S. Alavi, R. S. Hartman, and D. H. Waldeck, ibid. 94, 4509 (1991); D. S. Alavi and D. H. Waldeck, J. Phys. Chem. 95, 4848 (1991); R. S. Hartman, D. S. Alavi, and D. H. Waldeck, ibid. 95, 7872 (1991).
-
(1991)
J. Phys. Chem.
, vol.95
, pp. 7872
-
-
Hartman, R.S.1
Alavi, D.S.2
Waldeck, D.H.3
-
10
-
-
0031360833
-
-
G. S. Jas, Y. Wang, S. W. Pauls, C. K. Johnson, and K. Kuczera, J. Chem. Phys. 107, 8800 (1997).
-
(1997)
J. Chem. Phys.
, vol.107
, pp. 8800
-
-
Jas, G.S.1
Wang, Y.2
Pauls, S.W.3
Johnson, C.K.4
Kuczera, K.5
-
11
-
-
0031554825
-
-
J. S. Baskin, M. Gupta, M. Chachisvilis, and A. H. Zewail. Chem. Phys. Lett. 275, 437 (1997); J. S. Baskin, M. Chachisvilis, M. Gupta, and A. H. Zewail, J. Phys. Chem. A 102, 4158 (1998).
-
(1997)
Chem. Phys. Lett.
, vol.275
, pp. 437
-
-
Baskin, J.S.1
Gupta, M.2
Chachisvilis, M.3
Zewail, A.H.4
-
12
-
-
0001467957
-
-
J. S. Baskin, M. Gupta, M. Chachisvilis, and A. H. Zewail. Chem. Phys. Lett. 275, 437 (1997); J. S. Baskin, M. Chachisvilis, M. Gupta, and A. H. Zewail, J. Phys. Chem. A 102, 4158 (1998).
-
(1998)
J. Phys. Chem. A
, vol.102
, pp. 4158
-
-
Baskin, J.S.1
Chachisvilis, M.2
Gupta, M.3
Zewail, A.H.4
-
14
-
-
0011005925
-
-
edited by A. J. Barnes, W. J. Orville-Thomas, and J. Yarwood Reidel, Dordrecht
-
R. M. Lynden-Bell, in Molecular Liquids, Dynamics and Interactions, edited by A. J. Barnes, W. J. Orville-Thomas, and J. Yarwood (Reidel, Dordrecht, 1984).
-
(1984)
Molecular Liquids, Dynamics and Interactions
-
-
Lynden-Bell, R.M.1
-
22
-
-
0000456245
-
-
R. E. Larsen, E. F. David. G. Goodyear, and R. M. Stratt, J. Chem. Phys. 107, 524 (1997).
-
(1997)
J. Chem. Phys.
, vol.107
, pp. 524
-
-
Larsen, R.E.1
David, E.F.2
Goodyear, G.3
Stratt, R.M.4
-
24
-
-
33748625353
-
-
B. M. Ladanyi and R. M. Stratt, J. Phys. Chem. 99, 2502 (1995); 100, 1266 (1996).
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 1266
-
-
-
28
-
-
3743086840
-
-
G. Goodyear, R. E. Larsen, and R. M. Stratt, Phys. Rev. Lett. 76, 243 (1996); G. Goodyear and R. M. Stratt, J. Chem. Phys. 107, 3098 (1997).
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 243
-
-
Goodyear, G.1
Larsen, R.E.2
Stratt, R.M.3
-
29
-
-
0042654594
-
-
G. Goodyear, R. E. Larsen, and R. M. Stratt, Phys. Rev. Lett. 76, 243 (1996); G. Goodyear and R. M. Stratt, J. Chem. Phys. 107, 3098 (1997).
-
(1997)
J. Chem. Phys.
, vol.107
, pp. 3098
-
-
Goodyear, G.1
Stratt, R.M.2
-
30
-
-
0000594052
-
-
γ=0 also yields the relation (2.14). For a discussion of the role of translational invariance in INM spectra, see T.-M. Wu and R. F. Loring, J. Chem. Phys. 97, 8568 (1992); Y. Wan and R. M. Stratt, ibid. 98, 3224 (1993).
-
(1992)
J. Chem. Phys.
, vol.97
, pp. 8568
-
-
Wu, T.-M.1
Loring, R.F.2
-
31
-
-
0012677204
-
-
γ=0 also yields the relation (2.14). For a discussion of the role of translational invariance in INM spectra, see T.-M. Wu and R. F. Loring, J. Chem. Phys. 97, 8568 (1992); Y. Wan and R. M. Stratt, ibid. 98, 3224 (1993).
-
(1993)
J. Chem. Phys.
, vol.98
, pp. 3224
-
-
Wan, Y.1
Stratt, R.M.2
-
32
-
-
85037510535
-
-
note
-
⊥b satisfy the usual idempotent condition for projection operators (PP=P).
-
-
-
-
33
-
-
85037496403
-
-
note
-
jμ.
-
-
-
-
34
-
-
0001489826
-
-
B. J. Berne, M. E. Tuckerman, J. E. Straub, and A. L. R. Bug, J. Chem. Phys. 93, 5084 (1990).
-
(1990)
J. Chem. Phys.
, vol.93
, pp. 5084
-
-
Berne, B.J.1
Tuckerman, M.E.2
Straub, J.E.3
Bug, A.L.R.4
-
36
-
-
85037508176
-
-
note
-
The excluded volume reported here is computed assuming a van der Waals radius of σ/2 for each atom in the diatomic.
-
-
-
-
39
-
-
0003474751
-
-
Cambridge University Press, Cambridge, Chap. 11
-
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran, 2nd ed. (Cambridge University Press, Cambridge, 1992), Chap. 11.
-
(1992)
Numerical Recipes in Fortran, 2nd Ed.
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
45
-
-
85037502714
-
-
note
-
We use solvent/solute-site distance as a criterion for determining the identity of the nearest neighbors. Because there are two separate atomic sites on our solute, we can therefore end up with either 1 or 2 nearest-neighbor solvent atoms.
-
-
-
-
46
-
-
85037508487
-
-
note
-
The fact that in Table IV we see two of the vibrational friction cases with components having greater than 100% weight arises from the presence of a small nonzero cross term in the particular projection used in this paper. The total coupling strength is a sum of the projected coupling, C(proj), its complement, C(comp), and a cross term, C(cross). However, within the projection scheme we are using for a solute with a finite mass, the cross term can in principle be negative, although the actual value is inevitably tiny. The end result is that it is possible to get C(proj)/C(total) > 1.
-
-
-
-
47
-
-
85037494161
-
-
note
-
Av(r), we find z = 12.12, 11.16, 14.56, 13.93, and 13.65 for bond lengths d/σ= 1.25, 0.65, 0.325, 0.16, and 0.08, respectively.
-
-
-
-
48
-
-
0032606745
-
-
It is nonetheless perfectly possible for some spectroscopic manifestations of rotational and vibrational dynamics to appear to be independent of one another. See, A. Idrissi, M. Ricci, P. Bartolini, and R. Righini, J. Chem. Phys. 111, 4148 (1999).
-
(1999)
J. Chem. Phys.
, vol.111
, pp. 4148
-
-
Idrissi, A.1
Ricci, M.2
Bartolini, P.3
Righini, R.4
-
52
-
-
33645817037
-
-
S. Gnanakaran and R. M. Hochstrasser, J. Chem. Phys. 105, 3486 (1996); S. Gnanakaran, M. Lim, N. Pugliano, and R. M. Hochstrasser, J. Phys.: Condens. Matter 8, 9201 (1996).
-
(1996)
J. Chem. Phys.
, vol.105
, pp. 3486
-
-
Gnanakaran, S.1
Hochstrasser, R.M.2
-
53
-
-
0030284757
-
-
S. Gnanakaran and R. M. Hochstrasser, J. Chem. Phys. 105, 3486 (1996); S. Gnanakaran, M. Lim, N. Pugliano, and R. M. Hochstrasser, J. Phys.: Condens. Matter 8, 9201 (1996).
-
(1996)
J. Phys.: Condens. Matter
, vol.8
, pp. 9201
-
-
Gnanakaran, S.1
Lim, M.2
Pugliano, N.3
Hochstrasser, R.M.4
-
55
-
-
0005578616
-
-
These jumps have also been interpreted as resulting from uncorrelated binary collisions taking place between the solvent molecules and the solute. See, D. Chandler, J. Chem. Phys. 60, 3508 (1974).
-
(1974)
J. Chem. Phys.
, vol.60
, pp. 3508
-
-
Chandler, D.1
|