메뉴 건너뛰기




Volumn 153, Issue 2, 1999, Pages 660-665

The Fractional-Step Method for the Navier-Stokes Equations on Staggered Grids: The Accuracy of Three Variations

Author keywords

Fractional step; Navier stokes; Projection; Staggered

Indexed keywords

FRACTIONAL STEP; FRACTIONAL STEPS METHOD; NAVIER STOKES; NAVIER-STOKES EQUATION; PROJECTION; STAGGERED; STAGGERED-GRIDS;

EID: 0000697052     PISSN: 00219991     EISSN: None     Source Type: Journal    
DOI: 10.1006/jcph.1999.6275     Document Type: Article
Times cited : (128)

References (11)
  • 1
    • 0001608079 scopus 로고
    • A second-order projection method for the incompressible Navier-Stokes equations
    • J. B. Bell and P. Colella, A second-order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys. 85, 257 (1989).
    • (1989) J. Comput. Phys. , vol.85 , pp. 257
    • Bell, J.B.1    Colella, P.2
  • 2
    • 84968510911 scopus 로고
    • Numerical solution of the Navier-Stokes equations
    • A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp. 22, 745 (1968).
    • (1968) Math. Comp. , vol.22 , pp. 745
    • Chorin, A.J.1
  • 3
    • 28144434048 scopus 로고
    • Approximate factorisation as a high order splitting for the incompressible flow equations
    • J. Dukowicz and A. Dvinsky, Approximate factorisation as a high order splitting for the incompressible flow equations, J. Comput. Phys. 102, 336 (1992).
    • (1992) J. Comput. Phys. , vol.102 , pp. 336
    • Dukowicz, J.1    Dvinsky, A.2
  • 4
    • 33749190078 scopus 로고
    • Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface
    • F. Harlow and E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids 8, 2182 (1965).
    • (1965) Phys. Fluids , vol.8 , pp. 2182
    • Harlow, F.1    Welch, E.2
  • 5
    • 28144457683 scopus 로고
    • High-order splitting methods for the Navier-Stokes equations
    • G. Karniadakis, M. Israeli, and S. Orszag, High-order splitting methods for the Navier-Stokes equations, J. Comput. Phys. 97, 414 (1991).
    • (1991) J. Comput. Phys. , vol.97 , pp. 414
    • Karniadakis, G.1    Israeli, M.2    Orszag, S.3
  • 6
    • 46549092989 scopus 로고
    • Application of a fractional step method to incompressible Navier-Stokes equations
    • J. Kim and P. Moin, Application of a fractional step method to incompressible Navier-Stokes equations, J. Comput. Phys. 59, 308 (1985).
    • (1985) J. Comput. Phys. , vol.59 , pp. 308
    • Kim, J.1    Moin, P.2
  • 7
    • 0018480361 scopus 로고
    • A stable and accurate convective modelling procedure based on quadratic upstream interpolation
    • B. P. Leonard, A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput. Methods Appl. Mech. Engrg. 19, 59 (1979).
    • (1979) Comput. Methods Appl. Mech. Engrg. , vol.19 , pp. 59
    • Leonard, B.P.1
  • 8
  • 9
    • 0002615718 scopus 로고
    • An analysis of the fractional step method
    • J. B. Perot, An analysis of the fractional step method, J. Comput. Phys. 108, 249 (1993).
    • (1993) J. Comput. Phys. , vol.108 , pp. 249
    • Perot, J.B.1
  • 10
    • 0000674333 scopus 로고
    • A second order accurate pressure correction scheme for viscous incompressible flow
    • J. Van Kan, A second order accurate pressure correction scheme for viscous incompressible flow, SIAM J. Sci. Statist. Comput. 7, 870 (1986).
    • (1986) SIAM J. Sci. Statist. Comput. , vol.7 , pp. 870
    • Van Kan, J.1
  • 11
    • 0002044102 scopus 로고
    • A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates
    • Y. Zang, R. Street, and J. Koseff, A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates, J. Comput. Phys. 114, 18 (1994).
    • (1994) J. Comput. Phys. , vol.114 , pp. 18
    • Zang, Y.1    Street, R.2    Koseff, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.