-
1
-
-
0542396270
-
-
US Patent 3,119,853
-
Reetz, T.; Groves, W.; Dixon, W. D. US Patent 3,119,853, 1964.
-
(1964)
-
-
Reetz, T.1
Groves, W.2
Dixon, W.D.3
-
3
-
-
0030780856
-
-
(b) Sergueev, D.; Hasan, A.; Ramaswamy, M.; Shaw, B. R. Nucleosides Nucleotides 1997, 16, 1533-8.
-
(1997)
Nucleosides Nucleotides
, vol.16
, pp. 1533-1538
-
-
Sergueev, D.1
Hasan, A.2
Ramaswamy, M.3
Shaw, B.R.4
-
4
-
-
0027737710
-
-
Shaw, B. R.; Madison, J.; Sood, A.; Speilvogel, B. F. Methods Mol. Biol. 1993 20, 225.
-
(1993)
Methods Mol. Biol.
, vol.20
, pp. 225
-
-
Shaw, B.R.1
Madison, J.2
Sood, A.3
Speilvogel, B.F.4
-
5
-
-
0025647806
-
-
Sood, A.; Shaw, B. R.; Speilvogel, B. F. J. Am. Chem. Soc. 1990, 112, 9000-1.
-
(1990)
J. Am. Chem. Soc.
, vol.112
, pp. 9000-9001
-
-
Sood, A.1
Shaw, B.R.2
Speilvogel, B.F.3
-
6
-
-
0028847025
-
-
Li, H.; Porter, K.; Huang, F.; Shaw, B. R. Nucleic Acids Res. 1995, 23, 4495-501.
-
(1995)
Nucleic Acids Res.
, vol.23
, pp. 4495-4501
-
-
Li, H.1
Porter, K.2
Huang, F.3
Shaw, B.R.4
-
7
-
-
0029934395
-
-
Li, H.; Hardin, C.; Shaw, B. R. J. Am. Chem. Soc. 1996, 118, 6606-14.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 6606-6614
-
-
Li, H.1
Hardin, C.2
Shaw, B.R.3
-
8
-
-
0030723569
-
-
3, was published (without crystallographic parameters) in a report describing some of the chemistry of the anion. Imamoto, T.; Nagato, E.; Wada, Y.; Masuda, K.; Yamaguchi, K.; Uchimaru, T. J. Am. Chem. Soc. 1997, 119, 9925-6.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 9925-9926
-
-
Imamoto, T.1
Nagato, E.2
Wada, Y.3
Masuda, K.4
Yamaguchi, K.5
Uchimaru, T.6
-
10
-
-
33845278689
-
-
1/2), between observed and calculated ADP values was 0.033. For further information, see: Dunitz, J. D.; Schomaker, V.; Trueblood, K. N. J. Phys. Chem. 1988, 92, 856-67.
-
(1988)
J. Phys. Chem.
, vol.92
, pp. 856-867
-
-
Dunitz, J.D.1
Schomaker, V.2
Trueblood, K.N.3
-
11
-
-
0004133516
-
-
Gaussian, Inc.: Pittsburgh, PA
-
Ab initio calculations were performed using the program Gaussian 94. Each molecular structure was fully optimized with the 6-31+G** basis set using both the MP2 and the Hartree-Fock approximations (Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Kieth, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzeewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Revision B.1; Gaussian, Inc.: Pittsburgh, PA, 1995). The geometries were also optimized by applying a solvent model, using the self-consistent isodensity variation (SCI-PCM) of the polarized continuum model reaction field, to the HF/ 6-31+G** calculated structures. We also calculated atomic charges for the MP2-optimized gas-phase compounds using a natural bond order basis (as opposed to the atomic orbital basis), a method called natural population analysis (Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899). This method tends to be more reliable than using standard Mulliken populations, but yields somewhat more polar bonds.
-
(1995)
Gaussian 94, Revision B.1
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Gill, P.M.W.4
Johnson, B.G.5
Robb, M.A.6
Cheeseman, J.R.7
Kieth, T.8
Petersson, G.A.9
Montgomery, J.A.10
Raghavachari, K.11
Al-Laham, M.A.12
Zakrzeewski, V.G.13
Ortiz, J.V.14
Foresman, J.B.15
Cioslowski, J.16
Stefanov, B.B.17
Nanayakkara, A.18
Challacombe, M.19
Peng, C.Y.20
Ayala, P.Y.21
Chen, W.22
Wong, M.W.23
Andres, J.L.24
Replogle, E.S.25
Gomperts, R.26
Martin, R.L.27
Fox, D.J.28
Binkley, J.S.29
Defrees, D.J.30
Baker, J.31
Stewart, J.P.32
Head-Gordon, M.33
Gonzalez, C.34
Pople, J.A.35
more..
-
12
-
-
0011083499
-
-
This method tends to be more reliable than using standard Mulliken populations, but yields somewhat more polar bonds
-
Ab initio calculations were performed using the program Gaussian 94. Each molecular structure was fully optimized with the 6-31+G** basis set using both the MP2 and the Hartree-Fock approximations (Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Kieth, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzeewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Revision B.1; Gaussian, Inc.: Pittsburgh, PA, 1995). The geometries were also optimized by applying a solvent model, using the self-consistent isodensity variation (SCI-PCM) of the polarized continuum model reaction field, to the HF/ 6-31+G** calculated structures. We also calculated atomic charges for the MP2-optimized gas-phase compounds using a natural bond order basis (as opposed to the atomic orbital basis), a method called natural population analysis (Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899). This method tends to be more reliable than using standard Mulliken populations, but yields somewhat more polar bonds.
-
(1988)
Chem. Rev.
, vol.88
, pp. 899
-
-
Reed, A.E.1
Curtiss, L.A.2
Weinhold, F.3
-
14
-
-
0542420040
-
-
Positions of the borane hydrogens were obtained from difference Fourier maps, not by optimization as a constrained group
-
Positions of the borane hydrogens were obtained from difference Fourier maps, not by optimization as a constrained group.
-
-
-
-
18
-
-
0011562745
-
-
Smith, D. A., Ed.; ACS Symp. Ser. 567; American Chemical Society: Washington, DC
-
(a) Zottola, M. A.; Pedersen, L. G.; Singh, P.; Shaw, B. R. In Modeling the Hydrogen Bond; Smith, D. A., Ed.; ACS Symp. Ser. 567; American Chemical Society: Washington, DC, 1994; p 277-85.
-
(1994)
Modeling the Hydrogen Bond
, pp. 277-285
-
-
Zottola, M.A.1
Pedersen, L.G.2
Singh, P.3
Shaw, B.R.4
-
19
-
-
0000303567
-
-
(b) Crabtree, R. H.; Siegbahn, P. E. M.; Eisenstein, O.; Rheingold, A. L.; Koetzle, T. F. Acc. Chem. Res. 1996, 29, 348-54.
-
(1996)
Acc. Chem. Res.
, vol.29
, pp. 348-354
-
-
Crabtree, R.H.1
Siegbahn, P.E.M.2
Eisenstein, O.3
Rheingold, A.L.4
Koetzle, T.F.5
-
21
-
-
0542396275
-
-
note
-
Of the five closest contacts to the borane group, four are methyl hydrogen atoms (found 2.974(9), 3.142(6), 3.474(11), and 3.595(6) Å from the boron position) and one is a methine hydrogen (3.20(2) Å from boron).
-
-
-
-
22
-
-
0542372445
-
-
Ph.D. Dissertation, Duke University
-
Huang, F. Ph.D. Dissertation, Duke University, 1994.
-
(1994)
-
-
Huang, F.1
-
23
-
-
0030842860
-
-
Porter, K. W.; Briley, J. D.; Shaw, B. R. Nucleic Acids Res. 1997, 25, 1611-7.
-
(1997)
Nucleic Acids Res.
, vol.25
, pp. 1611-1617
-
-
Porter, K.W.1
Briley, J.D.2
Shaw, B.R.3
-
24
-
-
0542443817
-
-
note
-
m term, our kinetics studies indicate that the difference is primarily due to a decrease in the rate at which bound substrate is converted into product.
-
-
-
-
25
-
-
85088079096
-
-
note
-
1/2.
-
-
-
|