메뉴 건너뛰기




Volumn 28, Issue 5, 1996, Pages 509-513

An integral inequality on compact Lorentz manifolds, and its applications

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0000679153     PISSN: 00246093     EISSN: None     Source Type: Journal    
DOI: 10.1112/blms/28.5.509     Document Type: Article
Times cited : (21)

References (16)
  • 1
    • 0003096463 scopus 로고
    • Structure of homogeneous Riemannian spaces with zero Ricci curvature
    • D. V. ALEKSEEVSKII and B. N. KIMEL'FEL'D, 'Structure of homogeneous Riemannian spaces with zero Ricci curvature', Funktsional Anal. i Prilozhen 9 (1975) 5-11 (English translation: Functional Anal. Appl. 9 (1975) 97-102).
    • (1975) Funktsional Anal. i Prilozhen , vol.9 , pp. 5-11
    • Alekseevskii, D.V.1    KimeL'Fel'd, B.N.2
  • 2
    • 0042065737 scopus 로고
    • English translation
    • D. V. ALEKSEEVSKII and B. N. KIMEL'FEL'D, 'Structure of homogeneous Riemannian spaces with zero Ricci curvature', Funktsional Anal. i Prilozhen 9 (1975) 5-11 (English translation: Functional Anal. Appl. 9 (1975) 97-102).
    • (1975) Functional Anal. Appl. , vol.9 , pp. 97-102
  • 3
    • 0013479551 scopus 로고
    • Applications de la formule de Gauss-Bonnet-Chern aux variétés à quatre dimensions
    • A. AVEZ, 'Applications de la formule de Gauss-Bonnet-Chern aux variétés à quatre dimensions', C. R. Acad. Sci. Paris 256 (1963) 5488-5490.
    • (1963) C. R. Acad. Sci. Paris , vol.256 , pp. 5488-5490
    • Avez, A.1
  • 5
    • 84972545070 scopus 로고
    • Completeness of Lorentz manifolds of constant curvature admitting Killing vector fields
    • Y. KAMISHIMA, 'Completeness of Lorentz manifolds of constant curvature admitting Killing vector fields', J. Differential Geom. 37 (1993) 569-601.
    • (1993) J. Differential Geom. , vol.37 , pp. 569-601
    • Kamishima, Y.1
  • 7
    • 0011262531 scopus 로고
    • Proper actions and pseudo-Riemannian space forms
    • R. KULKARNI, 'Proper actions and pseudo-Riemannian space forms', Adv. Math. 40 (1981) 10-51.
    • (1981) Adv. Math. , vol.40 , pp. 10-51
    • Kulkarni, R.1
  • 8
    • 84972514282 scopus 로고
    • 3-Dimensional Lorentz space-forms and Seifert fiber spaces
    • R. KULKARNI and F. RAYMOND, '3-dimensional Lorentz space-forms and Seifert fiber spaces', J. Differential Geom. 21 (1985) 231-268.
    • (1985) J. Differential Geom. , vol.21 , pp. 231-268
    • Kulkarni, R.1    Raymond, F.2
  • 10
    • 21144466291 scopus 로고
    • On the completeness of geodesics obtained as a limit
    • A. ROMERO and M. SÁNCHEZ, 'On the completeness of geodesics obtained as a limit', J. Math. Phys. 34 (1993) 3768-3774.
    • (1993) J. Math. Phys. , vol.34 , pp. 3768-3774
    • Romero, A.1    Sánchez, M.2
  • 11
    • 0000063223 scopus 로고
    • Completeness of compact Lorentz manifolds admitting a timelike conformal Killing vector field
    • A. ROMERO and M. SÁNCHEZ, 'Completeness of compact Lorentz manifolds admitting a timelike conformal Killing vector field', Proc. Amer. Math. Soc. 123 (1995) 2831-2833.
    • (1995) Proc. Amer. Math. Soc. , vol.123 , pp. 2831-2833
    • Romero, A.1    Sánchez, M.2
  • 12
    • 0003304687 scopus 로고
    • General relativity for mathematicians
    • Springer, New York
    • R. SACHS and H. WU, General relativity for mathematicians, Graduate Texts in Math. 48 (Springer, New York, 1977).
    • (1977) Graduate Texts in Math. , vol.48
    • Sachs, R.1    Wu, H.2
  • 13
    • 84972552151 scopus 로고
    • Some examples of homogeneous Einstein manifolds in dimension seven
    • M. WANG, 'Some examples of homogeneous Einstein manifolds in dimension seven', Duke Math. J. 49 (1982) 23-28.
    • (1982) Duke Math. J. , vol.49 , pp. 23-28
    • Wang, M.1
  • 16
    • 0001335915 scopus 로고
    • Calabi's conjecture and some new results in algebraic geometry
    • S.-T. YAU, 'Calabi's conjecture and some new results in algebraic geometry', Proc. Nat. Acad. Sci. USA 74 (1977) 1798-1799.
    • (1977) Proc. Nat. Acad. Sci. USA , vol.74 , pp. 1798-1799
    • Yau, S.-T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.